

Regione Emilia-Romagna Direzione Generale Cura del Territorio e dell'Ambiente

PROGETTO EUROPEO "INIWAS"

ADEGUAMENTO DELL'IDROVIA FERRARESE AL TRAFFICO DI V CLASSE EUROPEA I LOTTO/ 1 STRALCIO/PARTE

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

PROGETTO ESECUTIVO

RUP:

Dott. Claudio Miccoli

PROGETTAZIONE:

Dott. Ing. Stefano Cassarini

STIGEA s.r.l.

GRUPPO DI LAVORO:

Stigea s.r.l.

Dott. Ing. M. Bolognesi Dott. Ing. M. Baratta Geom. R. Marini

Studio tecnico Vitali Geom. G.F. Vitali

SOCOTEC Italia s.r.l. Dott. Geol. G. Ferioli

TITOLO: ELABORATO:

Relazione di calcolo opere di sostegno

B.1

REV.:	DATA:	OGGETTO:	REDATTO:	VERIFICATO:	APPROVATO:	SCALA:
0	GIUGNO 2019	EMISSIONE	M. BOLOGNESI	M. BOLOGNESI	S. CASSARINI	-
1	AGOSTO 2019	REVISIONE	M. BOLOGNESI	M. BOLOGNESI	S. CASSAR INI	NOME FILE:
-	-	-	-	-	-	B_1_433_512_v2_Rel_calc_opere_sostegno.pdf
-	-	-	-	-	-	DATA:
-	-	-	-	-	-	24/06/2019

Ogni riproduzione, utilizzazione o cessione del presente disegno a terzi senza autorizzazione è punibile penalmente secondo i termini di legge

BOICELLI Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA 433

LOTTO ELABORATO

B_1

I-1

DOCUMENTO 512_v2 REV.

FOGLIO 2 di 117

INDICE

1	PREMESSA	4
2	INPUT ED OUTPUT DEL PROGRAMMA DI CALCOLO	6
	SEZ. TIPO A CORDOLO PORTA-BARRIERA CARATTERIZZATA DA: ALTEZZA DEL PARAMENTO H=0.70M	6
	SEZ. TIPO B MURO DI SOTTOSCARPA CARATTERIZZATA DA: ALTEZZA MASSIMA DEL PARAMENTO H=1.80M	9
3	NORMATIVA	12
4	MATERIALI	13
	CALCESTRUZZO PER USI STRUTTURALI	13
	ACCIAIO PER CEMENTO ARMATO	13
	Copriferri	13
	VERIFICA DELLO STATO LIMITE DI APERTURA DELLE FESSURE	13
5	INQUADRAMENTO GEOTECNICO	15
6	CARATTERIZZAZIONE SISMICA	16
7	METODO DI CALCOLO	19
	CONDIZIONI DI SPINTA SUL MURO IN CONDIZIONI STATICHE	19
	CONDIZIONI DI SPINTA SUL MURO IN CONDIZIONI SISMICHE	21
8	ANALISI DEI CARICHI E ANALISI DELLE OPERE	.24
	SPINTE DELLE TERRE	.24
	SOVRACCARICO PERMANENTE	29
	RILEVATO STRADALE	29
	SOVRACCARICO ACCIDENTALE	29
	URTO DI VEICOLO IN SVIO	.30
	AZIONE SISMICA	.30
	VERIFICHE DI STABILITA'	30
	8.1.1 Verifica a ribaltamento	30
	8.1.2 Verifica a scorrimento	31
	8.1.3 Verifica al carico limite	32

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	3 di 117

	8.1.4	Verifiche alla stabilità globale – Metodo di Bishop	34
	Analisi stru	TTURALE	35
	8.1.5	Verifiche agli stati limite ultimi	35
	8.1.6	Verifiche agli stati limite di esercizio	37
	COEFFICIENTI	UTILIZZATI NEL CALCOLO	40
	8.1.7	N.T.C. 2018 (A1"+"M1"+"R3)	40
9	MODELLO DI CA	LCOLO: CORDOLO PORTABARRIERA TIPO A, H 70 CM	42
10	MODELLO DI CA	LCOLO: MURO TIPO B - H 180 CM	79

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	4 di 117

1 PREMESSA

La presente relazione riguarda la progettazione esecutiva e le verifiche strutturali e geotecniche delle opere di sostegno previste nell'intervento denominato "PROGETTO EUROPEO "INIWAS" - ADEGUAMENTO DELL'IDROVIA FERRARESE AL TRAFFICO DI V CLASSE EUROPEA - I LOTTO/ 1 STRALCIO - DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI" finalizzato all'adeguamento della viabilità esistente ed all'esecuzione di viabilità provvisionale.

Si tratta di un muro a mensola in cls armato adibito al contenimento del rilevato stradale.

Le verifiche riguardano 2 sezioni tipologiche a fondazione diretta di muri di sottoscarpa con in testa eventuale barriera di sicurezza (vedasi tavole allegate) di differenti altezze e spessori:

- Sez. tipo A cordolo porta-barriera caratterizzata da: altezza del paramento H=0.70m, spessore fondazione s= 0.50m, larghezza fondazione lato monte I_m=1.30m, larghezza fondazione lato valle I_v=0.30m, spessore del muro s=0.70m.
- Sez. tipo B muro di sottoscarpa caratterizzata da: altezza massima del paramento H=1.80m, spessore fondazione s= 0.50m, larghezza fondazione lato monte I_m=1.70m, larghezza fondazione lato valle I_v=0.50m, spessore del muro s=0.3m.

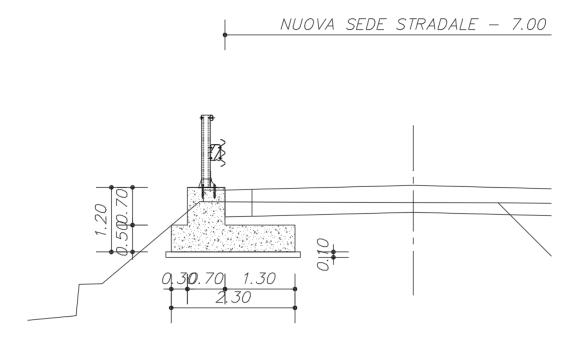


Figura 1 – Sezione A (muro h≤70 cm)

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	5 di 117

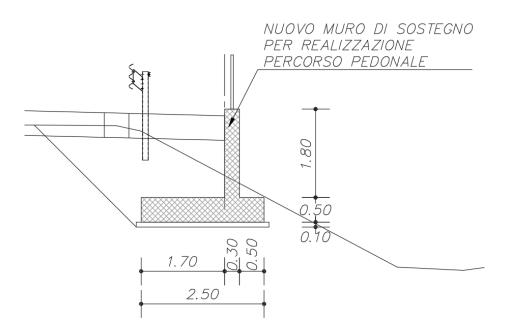
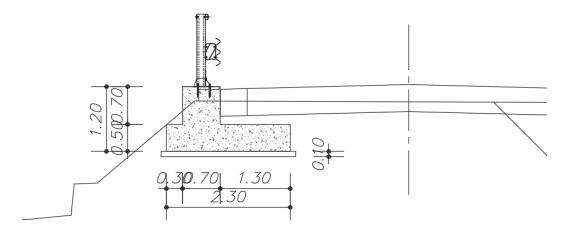
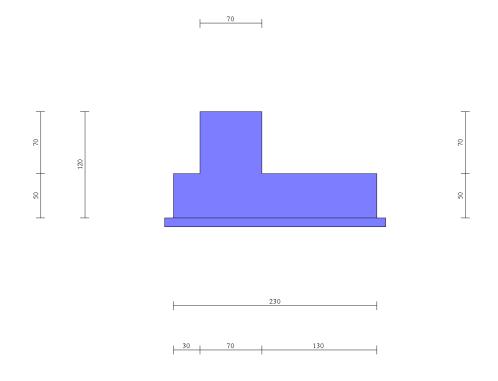


Figura 2 - Sezione B (muro h≤180 cm)


2 INPUT ED OUTPUT DEL PROGRAMMA DI CALCOLO

Relativamente hai modelli di calcolo adottati per le due tipologie di opere di sostegno in oggetto si riportano input (geometria ed carichi agenti) ed output (sintesi delle verifiche condotte).


Sez. tipo A cordolo porta-barriera caratterizzata da: altezza del paramento H=0.70m

Si riportano disegno tipologico, schema geometrico, carichi agenti e verifiche dell'opera.

Il disegno tipologico è il seguente:

Lo schema geometrico adottato nel modello di calcolo è il seguente:

ONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANAL BOICELLI

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	7 di 117

Progetto esecutivo

I carichi agenti sull'opera di sostegno in oggetto sono:

Carico distribuito da traffico

Si considera, a tergo del paramento verticale, un sovraccarico di 20 kPa uniformemente distribuito, a simulare la presenza del carico stradale.

Urto sulla barriera di sicurezza

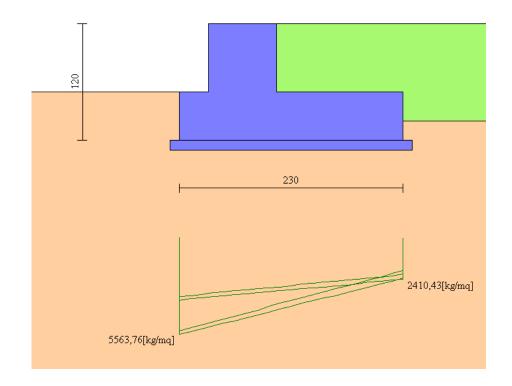
In accordo alla normativa italiana, in assenza di specifiche prescrizioni, nel progetto strutturale si può tener conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione di 100 kN. Se non diversamente indicato, la forza deve essere considerata distribuita su 0,50 m ed applicata ad una quota h, misurata dal piano viario, pari alla minore delle dimensioni h1, h2, dove h1 = (altezza della barriera - 0,10m), h2 = 1,00m.

L'azione viene ripartita sul concio di muro di lunghezza minima pari a 10.00 m.

Essendo l'urto un'azione eccezionale, le sollecitazioni indotte sulla struttura verranno studiate secondo la combinazione di carico eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

Peso proprio della barriera di sicurezza ed eventuale peso del cordolo


Si considera, ove presente, il peso proprio della barriera di sicurezza e del cordolo di sommità (comprensivo di veletta):

Fz Pp barr = 1.5 kN/m = 150 kg/m (peso proprio barriera di sicurezza)

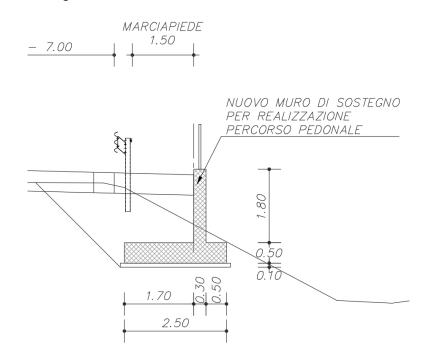
Fz_Pp_cord = 0 kg/m (peso proprio cordolo sagomato)

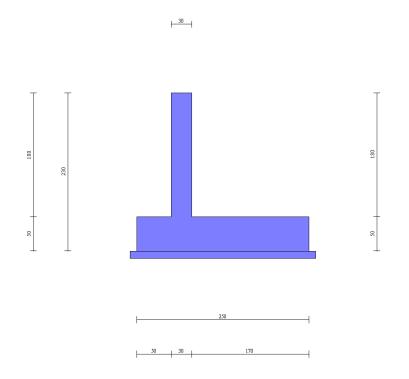
Regione Emilia-Romagna	AL TR	AFFICO DI	V CLASSE EU STRUZIONE D BOIG	BUAMENTO DELI ROPEA - I LOTTO DEL PONTE BAR CELLI esecutivo	0/1 STRA	LCIO
OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO	COMMESSA 433	LOTTO I-1	ELABORATO B_1	DOCUMENTO 512_v2	REV.	FOGLIO 8 di 117

La pressione massima sul terreno di fondazione risulta pari a 0.56 daN/cmq :

La sintesi delle verifiche condotte sull'opera di sostegno (FS) è la seguente:

n°	Combinazione	Sismica	FSsco	FSqlim	FSrib	FSstab	FShyd	FSupl
1	STR (A1-M1-R3)	H+V	1,198	6,239				
2	STR (A1-M1-R3)	H+V	1,980	14,453				
3	STR (A1-M1-R3)	H-V	1,134	6,156				
4	STR (A1-M1-R3)	H-V	1,878	14,974				
5	GEO (A2-M2-R2)	H+V				1,877		
6	GEO (A2-M2-R2)	H+V				2,639		
7	GEO (A2-M2-R2)	H-V				1,848		
8	GEO (A2-M2-R2)	H-V				2,578		
9	EQU (A1-M1-R3)	H+V			3,735			
10	EQU (A1-M1-R3)	H+V			7,244			
11	EQU (A1-M1-R3)	H-V			2,903			
12	EQU (A1-M1-R3)	H-V			4,818			


Tutte le verifche sono ammissibili.


Sez. tipo B muro di sottoscarpa caratterizzata da: altezza massima del paramento H=1.80m

Si riportano disegno tipologico, schema geometrico, carichi agenti e verifiche dell'opera.

Il disegno tipologico è il seguente:

Lo schema geometrico adottato nel modello di calcolo è il seguente:

BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV FOGLIO 433 512_v2 10 di 117 I-1 B 1 1

I carichi agenti sull'opera di sostegno in oggetto sono:

Carico distribuito da traffico

Si considera, a tergo del paramento verticale, un sovraccarico di 20 kPa uniformemente distribuito, a simulare la presenza del carico stradale.

Urto sulla barriera di sicurezza o spinta sul parapetto

In accordo alla normativa italiana, in assenza di specifiche prescrizioni, nel progetto strutturale si può tener conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione di 100 kN. Se non diversamente indicato, la forza deve essere considerata distribuita su 0,50 m ed applicata ad una quota h, misurata dal piano viario, pari alla minore delle dimensioni h1, h2, dove h1 = (altezza della barriera - 0,10m), h2 = 1,00m.

L'urto da traffico non è presente sulla presente opera di sostegno.

Si riporta la spinta sul parapetto pedonale presente pari a:

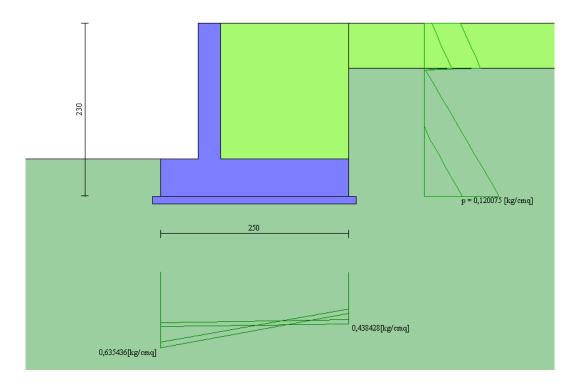
5.1.3.10 AZIONI SUI PARAPETTI E URTO DI VEICOLO IN SVIO: q8

L'altezza dei parapetti non può essere inferiore a 1,10 m. I parapetti devono essere calcolati in base ad un'azione orizzontale di 1,5 kN/m applicata al corrimano.

 $F_{parapetto}$ = 1.50 kN/m ed $M_{parapetto}$ = F x 1.10 m = 1.65 kNm/m.

Peso proprio della barriera di sicurezza ed eventuale peso del cordolo

Si considera, ove presente, il peso proprio della barriera di sicurezza, parapetto e del cordolo di sommità (comprensivo di veletta) :


 $F_{z Pp parapetto} = 0.3 \text{ kN/m} = 30 \text{ kg/m} \text{ (peso proprio parapetto)}$

 $F_{z Pp barr} = 1.5 \text{ kN/m} = 150 \text{ kg/m}$ (peso proprio barriera di sicurezza non presente)

 $F_{z_{p_{-}cord}} = 0 \text{ kg/m}$ (peso proprio cordolo sagomato)

Regione Emilia-Romagna	AL TR	AFFICO DI	V CLASSE EU STRUZIONE D BOIG	BUAMENTO DELI ROPEA - I LOTTO DEL PONTE BAR CELLI esecutivo	0/1 STRA	LCIO
OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO	COMMESSA 433	LOTTO I-1	ELABORATO B_1	DOCUMENTO 512_v2	REV.	FOGLIO 11 di 117

La pressione massima sul terreno di fondazione risulta pari a 0.63 daN/cmq :

La sintesi delle verifiche condotte sull'opera di sostegno (FS) è la seguente:

n°	Combinazione	Sismica	FSsco	FSqlim	FSrib	FSstab	FShyd	FSupl
1	STR (A1-M1-R3)	H+V	1,486	4,629				
2	STR (A1-M1-R3)	H+V	2,701	7,449				
3	STR (A1-M1-R3)	H-V	1,530	5,037				
4	STR (A1-M1-R3)	H-V	2,766	8,089				
5	GEO (A2-M2-R2)	H + V				1,801		
6	GEO (A2-M2-R2)	H + V				2,293		
7	GEO (A2-M2-R2)	H-V				1,847		
8	GEO (A2-M2-R2)	H-V				2,352		
9	EQU (A1-M1-R3)	H+V			4,002			
10	EQU (A1-M1-R3)	H+V			6,769			
11	EQU (A1-M1-R3)	H-V			3,220			
12	EQU (A1-M1-R3)	H-V			4,754			

Tutte le verifche sono ammissibili.

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	12 di 117

3 NORMATIVA

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le prescrizioni contenute nelle seguenti normative.

- Legge 5 novembre 1971 n. 1086 Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica;
- Circ. Min. LL.PP.14 Febbraio 1974, n. 11951 Applicazione della L. 5 novembre 1971, n. 1086";
- Legge 2 febbario 1974 n. 64, recante provvedimenti per le costruzioni co particolari prescrizioni per le zone sismiche;
- D. M. Min. II.TT. del 17 gennaio 2018 Aggior. Norme tecniche per le costruzioni;
- CIRCOLARE C.S.LL.PP. 21 gennaio2019, n. 7 Istruzioni per l'applicazione delle «Nuove norme tecniche per le costruzioni» di cui al decreto ministeriale 17 gennaio 2018.
- UNI ENV 1998-5 (Eurocodice 8) Gennaio 2005: "Progettazione delle strutture per la resistenza sismica Parte 2: Fondazioni, strutture di contenimento ed aspetti geotecnici";
- EUROCODICE 2- UNI EN 1992-1-1 Novembre 2005

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO 433 I-1 ELABORATO B_1 DOCUMENTO 512_v2 REV. FOGLIO 1 13 di 117

4 MATERIALI

Calcestruzzo per usi strutturali

ELEVAZIONE e FONDAZIONE - Classe di resistenza C32/40

Resistenza caratteristica cubica: Rck = 40 MPa

Resistenza caratteristica cilindrica: fck = 0.83Rck = 33.2 MPaResistenza caratteristica cilindrica media: fcm = fck + 8 = 41.2 MPa

Resistenza media a trazione semplice: fctm = 0.30 fck 2/3 = 3.10 MPa

Resistenza media a trazione per flessione: fcfm = 1,2 fctm = 3,72 MPa

Resistenza caratteristica a trazione semplice(5%): fctk = 0,7fctm = 2,17 MPa

Resistenza caratteristica a trazione semplice(95%): fctk = 1,3fctm = 4,03 MPa

Modulo di elasticità longitudinale: Ecm = 22.000[fcm/10]^0,3=33643 MPa

Acciaio per cemento armato

B450C			
F _{yk} ≥	450	N/mm ²	Tensione di snervamento caratteristica dell'acciaio
F _{tk} ≥	540	N/mm ²	Tensione a rottura caratteristica dell'acciaio
f _{yd} =	391	N/mm ²	Resistenza di calcolo
E _s =	206000	N/mm ²	modulo elastico

Copriferri

Opere di fondazione \rightarrow c = 40 mm

Opere in elevazione:superfici in vista \rightarrow c = 40 mm

Verifica dello stato limite di apertura delle fessure

Paramento $w_1 = 0.20 \text{mm} - \text{per la combinazione dei carichi quasi permanente}$

 $w_2 = 0.30$ mm – per la combinazione dei carichi frequente

Fondazione $w_1 = 0.20$ mm – per la combinazione dei carichi quasi permanente

 $w_2 = 0.30$ mm – per la combinazione dei carichi frequente

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	14 di 117

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Gruppi di Condizion		Combinazione	Armatura					
Gruppi di	ambientali	di azioni	Sensibile	Poco sensibile				
esigenze	ашыептап	di azioni	Stato limite	w _d	Stato limite	W _d		
	Ordinarie	frequente	ap. fessure	≤ w ₂	ap. fessure	≤ w ₃		
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq \mathbf{w}_2$		
b	Ai	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq \mathbf{w}_2$		
D	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$		
c N	Malta aggressiva	frequente	formazione fessure	-	ap. fessure	$\leq w_1$		
	Molto aggressive	quasi permanente	decompressione	_	ap. fessure	≤ w ₁		

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 15 di 117

5 INQUADRAMENTO GEOTECNICO

Il modello geotecnico utilizzato nella presente relazione è stato definito sulla base delle indicazioni riportate sulla relazione geotecnica. In particolare si considera la presenza del rilevato stradale esistente di spessore variabile quale piano di posa delle fondazioni:

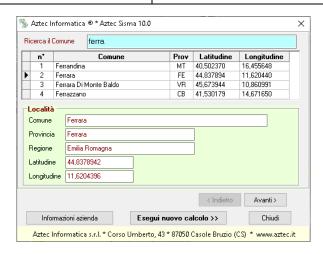
- R Rilevato esistente:
 - \circ y = 19.00 kN/m³
 - o φ' =34°
 - \circ c' = 0.0 kPa

Il terreno di fondazione è rappresentato da uno strato di sabbia con le seguenti caratteristiche:

- S Sabbia: Sabbia da fine a media.
 - \circ y = 19.50 kN/m³
 - ο φ' = 33°
 - \circ c' = 0.0

6 CARATTERIZZAZIONE SISMICA

Si riporta di seguito la caratterizzazione sismica dei luoghi e fisico-meccanica del terreno in accordo alle NTC2018.

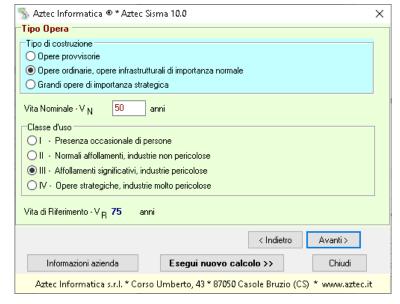

<u>PARAMETRI SISMICI</u>					
Vita Nominale (Anni) = 50	Coefficiente d'uso Cu =1,5				

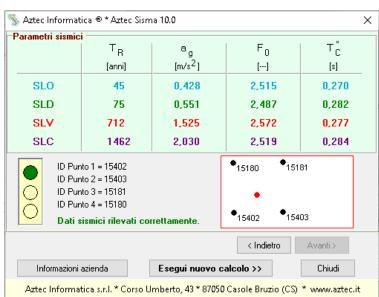
Si prevede in accordo con la committenza l'assunzione dei valori di VN e Cu riportati sopra. In questi termini si definisce come periodo di riferimento dell'azione sismica di progetto il tempo:

Tale valore ha notevole importanza in quanto assumendo una legge di ricorrenza dell'azione sismica di tipo Poissoniano permette di definire, una volta fissata la probabilità di superamento PVR corrispondente allo stato limite considerato (paragrafo 2.4.2 delle NTC 2018), il periodo di ritorno TR dell'azione sismica cui fare riferimento nelle verifiche.

Ai sensi delle NTC 2018 in materia di classificazione sismica della zona in cui ricadono le opere ed in base alle risultanze delle indagini geognostiche eseguite si considera come riferimento quanto riportato di seguito (comune di Ferrara):

<u>PARAMETRI SISMICI</u>						
Longitudine Est (Grd) 11.620440	Latitudine Nord (Grd) 44.837894					
Categoria Suolo C	Coeff. Condiz. Topogr. 1.00					




Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 17 di 117

In base ai parametri sopra esposti si possono eseguire le analisi sismiche statiche equivalenti. Inoltre possono definirsi i parametri concorrenti alla definizione del coefficiente di sottosuolo e condizioni topografiche (S=Ss·St vedi Tabelle 3.2.IV e 3.2.V) considerando, come riportato nella relazione geotecnica, suolo di categoria C e limitatamente alle zone in esame categoria topografica T1.

In base alle accelerazioni massime attese sul sito in esame si valutano, con le espressioni che seguono, i coefficienti di intensità sismica da utilizzarsi nelle analisi pseudo statiche che seguono:

	Simbolo	U.M.	SLU	SLE
Accelerazione al suolo	a g	[m/s ²]	1.525	0.551
Accelerazione al suolo	a _g /g	[%]	0.155	0.056

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 18 di 117

	Simbolo	U.M.		SLU	SLE
Massimo fattore amplificazione spettro orizzontale	F0			2.572	2.487
Periodo inizio tratto spettro a velocità costante	Tc*			0.277	0.282
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		С	1.460	1.500
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	
Coeff. di riduzione	βm			0.380	0.470
Coeff. di riduzione verifica a ribaltamento	βm			0.000	0.000
Coeff. di intensità sismica orizzontale	k h	[%]		8.626	3.959
Coeff. di intensità sismica verticale	$k_v = 0.50 \ k_h$	[%]		4.313	1.979

GRUPPO FERROVIE DELLO STATO	QUADRUPLICAMENTO DELLA LINEA FORTEZZA - VERONA SUB-LOTTO FUNZIONALE: FLUIDIFICAZIONE DEL TRAFFICO ED INTERCONNESSIONE CON LA RETE ESISTENTE DEL LOTTO 1 FORTEZZA – PONTE GARDENA						
MURI DI SOSTEGNO - RELAZIONE CALCOLO	DI	COMMESSA IBL1	LOTTO 1B	CODIFICA D 26CL	DOCUMENTO NV 06 10 001	REV.	FOGLIO 19 di 117

7 METODO DI CALCOLO

Si riporta inoltre di seguito una breve sintesi della procedura proposta per il calcolo delle spinte orizzontali agenti sulla parete dell'opera di sostegno e delle azioni verticali agenti sulla suola di fondazione.

Condizioni di spinta sul muro in condizioni statiche

Considerato un terrapieno con peso per unità di volume γ , sovraccarico uniforme su terrapieno q, condizioni drenate ed assenza di falda, si assume in genere la distribuzione di pressioni riportata nella seguente figura:

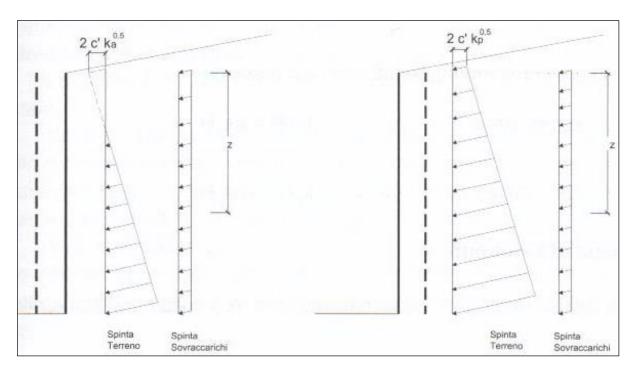


Figura 1 – Spinte orizzontali in condizioni statiche

che alla generica quota z dal piano campagna è pari a:

$$\sigma_a = \gamma k_a z + q k_a - 2c' \sqrt{k_a}$$

$$\sigma_p = \gamma k_p z + q k_p - 2c' \sqrt{k_p}$$

Il problema si riconduce quindi al calcolo dei coefficienti di spinta attiva ka o passiva kp.

BOICELLI Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 20 di 117

In condizioni statiche il coefficiente di spinta attiva e quello di spinta passiva sono valutati attraverso le espressioni di Muller-Breslau (1924):

$$k_{a} = \frac{sen^{2}(\psi + \varphi)}{sen^{2}\psi \cdot sen(\psi - \delta) \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \varepsilon)}{sen(\psi - \delta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$

$$k_{p} = \frac{sen^{2}(\psi - \varphi)}{sen^{2}\psi \cdot sen(\psi + \delta) \left[1 - \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi + \varepsilon)}{sen(\psi + \delta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$

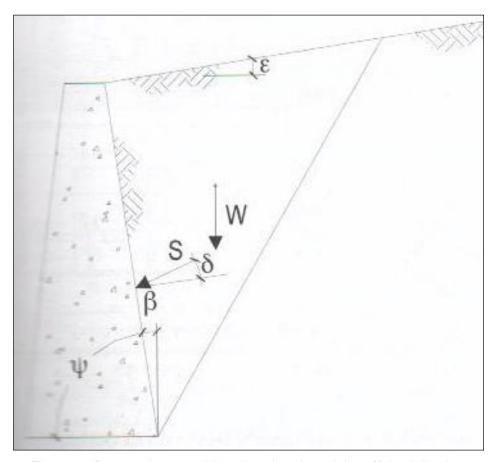


Figura 2 – Parametri geometrici per la valutazione dei coefficienti di spinta

Il coefficiente di spinta passiva ove necessario può essere valutato con l'espressione di Caquot-Kerisel (1948) attraverso la quale si tiene in conto l'effetto sulla spinta della creazione in rottura passiva di superfici di scorrimento non piane. Non considerare tale effetto significherebbe sovrastimare considerevolmente la pressione passiva.

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 21 di 117

Il punto di applicazione della spinta delle terre è da prassi considerato a 1/3 dell'altezza del muro mentre quella dei sovraccarichi è da considerarsi a metà dell'altezza del muro.

Condizioni di spinta sul muro in condizioni sismiche

L'analisi delle spinte sull'opera di sostegno in condizioni sismiche è eseguita attraverso metodi pseudo-statici. Nell'ipotesi di muro libero di muoversi in testa il metodo più appropriato è quello di Mononobe-Okabe il quale rappresenta un'estensione del criterio di Coulomb in cui il cuneo di rottura si muove di corpo rigido soggetto ad accelerazioni verticali ed orizzontali espresse in funzione di opportuni coefficienti di intensità sismica kv e kh espressi anche dalle norme vigenti. In tale metodo le condizioni di equilibrio limite sono espresse ancora da coefficienti di spinta attiva e passiva definiti a partire dalla geometria del sistema e dalle condizioni sismiche di calcolo. Considerando un terreno fuori falda:

$$\mathcal{G} = \arctan \frac{k_h}{1 \pm k_y}$$

ed i coefficienti di spinta sono rappresentati da:

$$k_{a} = \frac{sen^{2}(\psi + \varphi - \vartheta)}{\cos\vartheta \cdot sen^{2}\psi \cdot sen(\psi - \delta - \vartheta) \left[1 + \sqrt{\frac{sen(\varphi + \delta) \cdot sen(\varphi - \varepsilon - \vartheta)}{sen(\psi - \delta - \vartheta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$

per
$$\varepsilon \ge \varphi' - \vartheta$$

$$k_a = \frac{sen^2(\psi + \varphi - \vartheta)}{\cos \vartheta \cdot sen^2 \psi \cdot sen(\psi - \delta - \vartheta)}$$

$$k_{p} = \frac{sen^{2}(\psi + \varphi - \vartheta)}{\cos \vartheta \cdot sen^{2}\psi \cdot sen(\psi + \vartheta) \left[1 - \sqrt{\frac{sen\varphi \cdot sen(\varphi + \varepsilon - \vartheta)}{sen(\psi + \vartheta) \cdot sen(\psi + \varepsilon)}}\right]^{2}}$$

La spinta del terreno in condizioni sismiche si assume quindi:

$$S_a = \frac{1}{2} \gamma (1 \pm k_v) k_a H^2$$

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 22 di 117

$$S_p = \frac{1}{2} \gamma (1 \pm k_v) k_p H^2$$

con inclinazione del piano di rottura valutabile attraverso l'espressione:

$$\alpha = \varphi - \vartheta + \arctan \left[\sqrt{\frac{P \cdot (P + Q) \cdot (1 + Q \cdot R) - P}{1 + R \cdot (P + Q)}} \right]$$

con
$$P = \tan(\varphi - \vartheta - \varepsilon)$$

$$Q = \cot an(\varphi - \vartheta - \beta)$$

$$R = \tan(\mathcal{G} + \beta + \delta)$$

Figura 3 – Azioni sismiche pseudo-statiche

Nel caso di terreno con presenza di falda e permeabilità inferiore a $5x10^{-4}$ m/sec si trascurano gli effetti idrodinamici dell'acqua maggiorando l'angolo Θ secondo l'espressione:

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	23 di 117

$$\theta = \arctan\left(\frac{\gamma_{sat}}{\gamma_{sat} - \gamma_{w}} \frac{k_{h}}{1 \pm k_{v}}\right)$$

e la spinta agente sulla parete si definisce solo a mezzo di effetti statici:

$$S_a = \frac{1}{2} \gamma' (1 + k_v) k_a H^2 + \frac{1}{2} \gamma_w H^2$$

Nel caso di valori maggiori di permeabilità va considerato anche l'effetto dinamico valutabile con l'espressione:

$$E_{wd} = \frac{7}{2} k_h \gamma_w H^2$$

azione applicata ad un'altezza pari ad 0.4H dalla base del muro.

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 24 di 117

8 ANALISI DEI CARICHI E ANALISI DELLE OPERE

Si adotta il software "MAX15.01.e" della software house Aztec Informatica per il progetto e la verifica dei muri di sostegno:

Le azioni considerate agenti sull'opera sono state calcolate con riferimento alle indicazioni riportate sulle "Nuove Norme Tecniche per le Costruzioni" e sono di seguito descritte.

Spinte delle terre

Metodo di Coulomb

La teoria di Coulomb considera l'ipotesi di un cuneo di spinta a monte del muro che si muove rigidamente lungo una superficie di rottura rettilinea. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno. In particolare Coulomb ammette, al contrario della teoria di Rankine, l'esistenza di attrito fra il terreno e il paramento del muro, e quindi la retta di spinta risulta inclinata rispetto alla normale al paramento stesso di un angolo di attrito terra-muro.

L'espressione della spinta esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Coulomb dalla seguente relazione

$$S = 1/2\gamma H^2 Ka$$

Ka rappresenta il coefficiente di spinta attiva di Coulomb nella versione riveduta da Muller-Breslau, espresso come

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 25 di 117

dove ϕ è l'angolo d'attrito del terreno, α rappresenta l'angolo che la parete forma con l'orizzontale (α = 90° per parete verticale), δ è l'angolo d'attrito terreno-parete, β è l'inclinazione del terrapieno rispetto all'orizzontale.

La spinta risulta inclinata dell'angolo d'attrito terreno-parete δ rispetto alla normale alla parete.

Il diagramma delle pressioni del terreno sulla parete risulta triangolare con il vertice in alto. Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3 H rispetto alla base della parete). L'espressione di K a perde di significato per $\beta>\phi$. Questo coincide con quanto si intuisce fisicamente: la pendenza del terreno a monte della parete non può superare l'angolo di natural declivio del terreno stesso.

Nel caso in cui il terrapieno sia gravato di un sovraccarico uniforme Q l'espressione della pressione e della spinta diventano

$$\sigma_a = (\gamma z + Q)K_a$$

$$S = (1/2\gamma H^2 + QH)K_a$$

Al carico Q corrisponde un diagramma delle pressioni rettangolare con risultante applicata a 1/2H.

Nel caso di terreno dotato di coesione c l'espressione della pressione esercitata sulla parete, alla generica profondità z, diventa

$$\sigma a = \gamma z Ka - 2c(Ka)1/2$$

Al diagramma triangolare, espresso dal termine γ zKa, si sottrae il diagramma rettangolare legato al termine con la coesione. La pressione σ a risulta negativa per valori di z minori di

$$h_c = \frac{2c}{\gamma (K_a)^{1/2}}$$

La grandezza hc è detta altezza critica e rappresenta la profondità di potenziale frattura del terreno. E' chiaro che se l'altezza della parete è inferiore ad hc non abbiamo nessuna spinta sulla parete.

Metodo di Mononobe Okabe

Il metodo di Mononobe-Okabe adotta le stesse ipotesi della teoria di Coulomb: un cuneo di spinta a monte del

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 26 di 117

muro che si muove rigidamente lungo una superficie di rottura rettilinea. Mette in conto inoltre l'inerzia sismica del cuneo in direzione orizzontale e verticale. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno in condizioni sismiche. Viene messo in conto, come nella teoria di Coulomb, l'esistenza dell' attrito fra il terreno e il paramento del muro, e quindi la retta di spinta risulta inclinata rispetto alla normale al paramento stesso di un angolo di attrito terra-muro.

L'espressione della spinta totale (statica più sismica) esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Mononobe-Okabe dalla seguente relazione

$$S = 1/2(1\pm kv)\gamma H^2Ka$$

Ka rappresenta il coefficiente di spinta attiva espresso da

$$\sin(\alpha + \phi - \theta)$$

$$K_{a} = \frac{\sqrt{\left[\sin(\phi + \delta)\sin(\phi - \beta - \theta)\right]}}{\sqrt{\left[\sin(\alpha - \delta - \theta)\left[1 + \frac{1}{2}\right]^{2}\right]}}$$

L'angolo θ è legato al coefficiente sismico dalla seguente espressione

$$tan(\theta)=k_h/(1\pm k_v)$$

dove kh e kv rappresentano in coefficiente di intensità sismica orizzontale e verticale.

Nel caso in cui il terrapieno sia gravato di un sovraccarico uniforme Q l'espressione della pressione e della spinta diventano

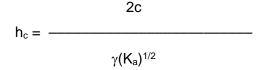
$$\sigma_a = (\gamma z + Q)K_a$$

$$S = (1/2\gamma H^2 + QH)K_a$$

Al carico Q corrisponde un diagramma delle pressioni rettangolare con risultante applicata a 1/2H.

Nel caso di terreno dotato di coesione c l'espressione della pressione esercitata sulla parete, alla generica profondità z, diventa

$$\sigma_a = \gamma z K_a - 2c(K_a)^{1/2}$$


Al diagramma triangolare, espresso dal termine γ zKa, si sottrae il diagramma rettangolare legato al termine con la coesione. La pressione σ a risulta negativa per valori di z minori di

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	27 di 117

La grandezza hc è detta altezza critica e rappresenta la profondità di potenziale frattura del terreno. E' chiaro che se l'altezza della parete è inferiore ad hc non abbiamo nessuna spinta sulla parete.

Metodo di Culmann

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

Spinta in presenza di falda

Nel caso in cui a monte del muro sia presente la falda il diagramma delle pressioni sul muro risulta modificato a

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 28 di 117

causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_{\text{a}}$$
 = γ_{sat} - γ_{w}

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_{w} è il peso specifico dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

Spinta in presenza di sisma

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ϵ l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\varepsilon' = \varepsilon + \theta$$

$$\beta' = \beta + \theta$$

dove θ = arctg(kh/(1±kv)) essendo kh il coefficiente sismico orizzontale e kv il coefficiente sismico verticale, definito in funzione di kh.

In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = arctg[(\gamma_{sat}/(\gamma_{sat}-\gamma_{w}))^{*}(k_{h}/(1\pm k_{v}))]$$

Terreno a permeabilità elevata

$$\theta = arctg[(\gamma/(\gamma_{sat}-\gamma_{w}))^{*}(k_{h}/(1\pm k_{v}))]$$

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 29 di 117

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta \cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Sovraccarico permanente

Eventuali sovraccarichi permanenti a tergo del muro vengono considerati con il valore della pressione esercitata sul terreno.

Si considera, ove presente, il peso proprio della barriera di sicurezza e del cordolo di sommità (comprensivo di veletta) :

 $F_{z_{p_b}barr} = 1.5 \text{ kN/m} = 150 \text{ kg/m}$ (peso proprio barriera di sicurezza)

 $F_{z Pp cord} = 0 \text{ kg/m (peso proprio cordolo)}$

Rilevato stradale

Nel caso di muri che sostengono un rilevato stradale, quest'ultimo viene schematizzato conformando il terreno a tergo del muro secondo le geometrie del rilevato ed i parametri sopra riportati.

Sovraccarico accidentale

Si considera, a tergo del paramento verticale, un sovraccarico di 20 kPa uniformemente distribuito, a simulare la presenza del carico stradale.

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 30 di 117

Urto di veicolo in svio

In accordo alla normativa italiana, in assenza di specifiche prescrizioni, nel progetto strutturale si può tener conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione di 100 kN. Se non diversamente indicato, la forza deve essere considerata distribuita su 0,50 m ed applicata ad una quota h, misurata dal piano viario, pari alla minore delle dimensioni h1, h2, dove h1 = (altezza della barriera - 0,10m), h2 = 1,00m.

L'azione viene ripartita sul concio di muro di lunghezza minima pari a 10.00 m.

Essendo l'urto un'azione eccezionale, le sollecitazioni indotte sulla struttura verranno studiate secondo la combinazione di carico eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Azione sismica

Per la determinazione dei parametri di calcolo delle azioni sismiche si rimanda al paragrafo della presente relazione.

In analogia a quanto previsto relativo ai ponti, per la determinazione degli effetti di tali azioni si farà di regola riferimento alle sole masse corrispondenti ai pesi propri ed ai sovraccarichi permanenti, considerando nullo il valore quasi permanente delle masse corrispondenti ai carichi da traffico.

Ove necessario, per esempio per opere in zona urbana di intenso traffico, si dovrà considerare un valore non nullo di dette masse in accordo con NTC2018008. In particolare si assume $\psi_{2j} = 0.2$ ove necessario.

Verifiche di stabilita'

Il calcolo del muro di sostegno viene eseguito secondo le seguenti fasi:

- Verifica a ribaltamento
- Verifica a scorrimento del muro sul piano di posa
- Verifica della stabilità complesso fondazione terreno (carico limite)
- Verifica della stabilità globale

8.1.1 Verifica a ribaltamento

La verifica a ribaltamento consiste nel determinare il momento risultante di tutte le forze che tendono a fare ribaltare il muro (momento ribaltante Mr) ed il momento risultante di tutte le forze che tendono a stabilizzare il muro (momento stabilizzante Ms) rispetto allo spigolo a valle della fondazione e verificare che il rapporto Ms/Mr sia maggiore di un determinato coefficiente di sicurezza ηr .

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 31 di 117

Deve quindi essere verificata la seguente diseguaglianza

$$M_s$$
 M_r

Il momento ribaltante Mr è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante.

Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

8.1.2 Verifica a scorrimento

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento risulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento Fr e la risultante delle forze che tendono a fare scorrere il muro Fs risulta maggiore di un determinato coefficiente di sicurezza ns

$$F_r$$
 $\longrightarrow >= \eta_s$
 F_s

Le forze che intervengono nella Fs sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con δ_f l'angolo d'attrito terreno-fondazione, con ca l'adesione terreno-fondazione e con Br la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N tg \delta_f + c_a B_r$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	32 di 117

50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

8.1.3 Verifica al carico limite

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a ηq . Cioè, detto Qu, il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

Le espressioni di Hansen per il calcolo della capacità portante si differenziano a secondo se siamo in presenza di un terreno puramente coesivo (ϕ =0) o meno e si esprimono nel modo seguente:

Caso generale:
$$q_u = cN_cs_cd_{cic}g_cb_c + qN_qs_qd_{qiq}g_qb_q + 0.5B\gamma N_\gamma s_\gamma d_\gamma i_\gamma g_\gamma b_\gamma$$

$$q_u = 5.14c(1+sc+dc-ic-gc-bc) + q$$

in cui dc, dq, d γ , sono i fattori di profondità; sc, sq, s γ , sono i fattori di forma; ic, iq, i γ , sono i fattori di inclinazione del carico; bc, bq, b γ , sono i fattori di inclinazione del piano di posa; gc, gq, g γ , sono i fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori N_c , N_q , N_γ sono espressi come:

$$N_q = e^{\pi t g \phi} K_p$$

$$Nc = (Nq - 1)ctg\phi$$

$$N\gamma = 1.5(Nq - 1)tg\phi$$

Vediamo ora come si esprimono i vari fattori che compaiono nella espressione del carico ultimo.

Fattori di forma

per
$$\phi = 0$$
 $s_c = 0.2 \cdot \frac{B}{L}$

per
$$\phi > 0$$
 $s_q = 1 + \frac{N_q}{N_c} \frac{B}{L}$

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	33 di 117

$$s_q = 1 + \frac{B}{L} \tan \phi$$

$$s_{\gamma} = 1 - 0.4 \frac{B}{I}$$

Fattori di profondità

Si definisce il parametro k come:

$$k = \frac{D}{R}$$

se
$$\frac{D}{B} \le 1$$

$$k = arctg \frac{D}{B}$$

se
$$\frac{D}{R} > 1$$

I vari coefficienti si esprimono come:

per
$$\phi = 0$$

$$d_{c} = 0.4k$$

per
$$\phi > 0$$

$$d_c = 1 + 0.4k$$

$$d_q = 1 + 2tg\phi(1 - \sin\phi)^2 k$$

$$d_{\nu} = 1$$

Fattori di inclinazione del carico

I fattori di inclinazione del carico si esprimono come:

per
$$\phi = 0$$

$$i_c = 1/2 \left(1 - \sqrt{1 - \frac{H}{A_f c_a}} \right)$$

per
$$\phi > 0$$

$$i_c = i_q - \frac{1 - i_q}{N_q - 1}$$

$$i_q = \left(1 - \frac{0.5H}{V + A_f c_a ctg\phi}\right)^5$$

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	34 di 117

per
$$\eta = 0$$

$$i_{\gamma} = \left(1 - \frac{0.7H}{V + A_f c_a ctg\phi}\right)^5$$

$$i_{\gamma} = \left(1 - \frac{(0.7 - \eta / 450)H}{V + A_f c_a ctg\phi}\right)^5$$

Fattori di inclinazione del piano di posa della fondazione

per
$$\phi = 0$$

$$b_c = \frac{\eta}{147}$$

per
$$\phi > 0$$

$$b_c = 1 - \frac{\eta}{147}$$

$$b_q = e^{-2\eta t g\phi}$$

$$b_{\gamma} = e^{-2.7\eta t g\phi}$$

Fattori di inclinazione del terreno

Indicando con β la pendenza del pendio i fattori g si ottengono dalle seguenti espressioni:

per
$$\phi = 0$$

$$g_c = \frac{\beta}{147}$$

$$g_c = 1 - \frac{\beta}{147}$$

$$g_q = g_{\gamma} = (1 - 0.05 tg\beta)^5$$

Per poter applicare la formula di Hansen devono risultare e verificare le seguenti condizioni:

$$H < V tg\delta + Af ca$$

$$\beta \leq \phi$$

iq, i
$$\gamma > 0$$

$$\beta + \eta \leq 90^{\circ}$$

8.1.4 Verifiche alla stabilità globale – Metodo di Bishop

La verifica alla stabilità globale del complesso muro + terreno deve fornire un coefficiente di sicurezza non inferiore a η_9 .

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 35 di 117

scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro o con i pali di fondazione. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 50.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\eta = \frac{\displaystyle\sum_{i} c_{i}b_{i} + \left(W_{i} - u_{i}b_{i}\right) tg\phi_{i}}{\displaystyle\sum_{i} W_{i} \sin \, \alpha_{i}}$$

dove il termine m è espresso da:

$$m = \left(1 + \frac{tg\phi_i tg\alpha_i}{\eta}\right)\cos\alpha_i$$

In questa espressione n è il numero delle strisce considerate, bi e α i sono la larghezza e l'inclinazione della base della striscia iesima rispetto all'orizzontale, Wi è il peso della striscia iesima , ci e ϕ i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed ui è la pressione neutra lungo la base della striscia.

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approssimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare fin quando il valore calcolato coincide con il valore assunto.

Analisi strutturale

8.1.5 Verifiche agli stati limite ultimi

La verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto delle condizioni più gravose che si individuano dall'inviluppo delle sollecitazioni agenti nelle diverse combinazioni di carico.

Le combinazioni e i coefficienti moltiplicativi delle singole azioni vengono definiti in base a quanto indicato al paragrafo 6.2.3.1.1 del D.M.14/01/08.

Verifica a presso flessione.

La verifica sugli elementi viene condotta calcolando il momento resistente massimo della sezione in presenza o meno di sforzo assiale di compressione. Il calcolo si basa sull'assunzione dei diagrammi di calcolo a tensione-deformazione del calcestruzzo e dell'acciaio previsti dalla normativa.

Con riferimento alla sezione presso inflessa, sotto rappresentata assieme ai diagrammi di deformazione e di sforzo così come dedotti dalle ipotesi e dai modelli σ - ϵ di definiti ai paragrafi 4.1.2.1.2.2 e 4.1.2.1.2.3 del D.M.14/01/08, la verifica di resistenza (SLU) si esegue controllando che:

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	36 di 117

$$M_{Rd} = M_{Rd} (N_{Ed}) \ge M_{Ed}$$

dove:

N_{Ed} è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

M_{Rd} è il valore di calcolo del momento resistente corrispondente a NEd;

M_{Ed} è il valore di calcolo della componente flettente dell'azione.

Verifica a taglio

La verifica a taglio viene condotta per gli elementi senza armature trasversali resistenti a taglio mediante l'espressione fornita dalla normativa:

$$V_{Rd} = \left\{0.18 \cdot k \cdot \left(100 \cdot \rho_I \cdot f_{ck}\right)^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp}\right\} \cdot b_w \cdot d \ge \left(v_{\min} + 0.15 \cdot \sigma_{cp}\right) \cdot b_w \cdot d$$

dove:

 $k = 1 + (200/d)1/2 \le 2$

 $v_{min} = 0.035k_3/2f_{ck}1/2$

d altezza utile della sezione (in mm);

pl = Asl /(bwd) rapporto geometrico di armatura longitudinale (≤ 0,02);

 $\sigma_{cp} = N_{Ed}/Ac$ tensione media di compressione nella sezione ($\leq 0,2$ fcd);

b_w larghezza minima della sezione (in mm).

Nel caso in cui tale verifica non sia soddisfatta, occorre procedere alla seconda verifica, quella prevista per gli elementi con armatura trasversali resistenti a taglio.

In tal caso la resistenza a taglio ultima è fornita dal valore minore delle due resistenza secondo il meccanismo taglio-trazione o taglio-compressione forniti da normativa. Più precisamente:

per la resistenza a "taglio trazione":

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg(\alpha) + ctg(\theta)) \cdot \sin(\alpha)$$

per la resistenza a "taglio trazione":

$$V_{Bcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_C \cdot f'_{cd} \cdot (ctg(\alpha) + ctg(\theta)) / (1 + ctg^2(\theta))$$

La resistenza al taglio della trave è la minore delle due sopra definite:

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 37 di 117

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$

dove d, bw e σcp hanno il significato già visto e inoltre si è posto:

Asw area dell'armatura trasversale;

- s interasse tra due armature trasversali consecutive;
- á angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave;
- f'_{cd} resistenza a compressione ridotta del calcestruzzo d'anima ($f'_{cd} = 0.5 f_{cd}$);
- α_c coefficiente maggiorativo pari a: 1 per membrature non compresse

$$1 + \sigma_{cp} / f_{cd}$$
 per $0 \le \sigma cp < 0.25$ fcd

1,25 per 0,25 fcd
$$\leq \sigma cp \leq 0,5$$
 fcd

$$2.5(1 - \sigma_{cp}/f_{cd})$$
 per 0.5 fcd $< \sigma_{cp} < f_{cd}$

L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti: $1 \le c_{tg} \theta \le 2,5$.

8.1.6 Verifiche agli stati limite di esercizio

La verifica in esercizio delle sezioni nei vari elementi strutturali, come già evidenziato, si articola in tre principali categorie di seguito elencate. Anche in questo caso le verifiche vengono condotte tenendo conto delle condizioni più gravose che si individuano dall'inviluppo delle sollecitazioni agenti nelle diverse combinazioni di carico relative allo stato limite di esercizio considerato nelle verifiche stesse.

Verifiche di fessurazione

Si valuterà lo stato limite di apertura delle fessure; per la combinazione di azioni prescelta, il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$

$$w_2 = 0.3 \text{ mm}$$

$$w_3 = 0.4 \text{ mm}$$

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione.

Per la tipologia di opera la condizione ambientale scelta è quella aggressiva. Di seguito si riporta la tabella delle NTC2018, con i limiti di fessure per lo stato limite di esercizio considerato,

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 38 di 117

Gruppi di Condizioni Combinaz		Combinazione		Armatur	a	
esigenze	ambientali			Sensibile		
esigenze	ашогентан	си адіоні	Stato limite	Wd	Stato limite	Wd
_	Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq w_3$
а	Olumarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$
h.	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq \mathbf{w}_2$
	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq \mathbf{w}_1$
	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$
c	Mono aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$

Le condizioni ambientali considerate risultano essere quelle del gruppo b ovvero condizioni ambientali aggressive.

Il valore di calcolo di apertura delle fessure (w_d) non deve superare i valori nominali w1, w2, w3 secondo quanto riportato nella Tab. 4.1.IV. Il valore di calcolo è dato da:

dove wm, rappresenta l'ampiezza media delle fessure, calcolata come prodotto della deformazione media delle barre d'armatura ϵ sm per la distanza media delle fessure Δ sm:

$$W_m = \varepsilon_{sm} * \Delta_{sm}$$

 ϵ sm e Δ sm sono calcolati secondo le disposizioni della letteratura tecnica. In alternativa il valore di wd può essere calcolato con la seguente espressione:

$$W_d = \varepsilon_{sm} * \Delta_{smax}$$

dove:

Δsmax è la distanza massima tra le fessure.

La deformazione unitaria media delle esm può essere calcolata con l'espressione:

$$\varepsilon_{sm} = \frac{\sigma_s - k_t \frac{f_{ctm}}{\rho_{eff}} (1 + \alpha_e \rho_{eff})}{E_s} \le \frac{\sigma_s}{E_s}$$

σ_s è la tensione nell'armatura tesa considerando la sezione fessurata;

 a_e è il rapporto E_s/E_{cm} ;

 ρ_{eff} è pari a A_s / A _{c,eff}

Ac,eff è l'area efficace di calcestruzzo teso attorno all'armatura, di altezza hc,ef, dove hc,ef è

il minore tra 2.5 (h -d), (h -x)/3 o h /2 (vedere figura C4.1.9);

kt è un fattore dipendente dalla durata del carico e vale:

kt = 0,6 per carichi di breve durata,

kt = 0,4 per carichi di lunga durata.

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 39 di 117

La distanza massima tra le fessure, Δsmax , può essere valutata con l'espressione:

$$\Delta_{smax} = k_3 c + k_1 k_2 k_4 \frac{\phi}{\rho_{eff}}$$

Dove ϕ è il diametro delle barre.

Se nella sezione considerata sono impiegate barre di diametro diverso, si raccomanda di adottare un opportuno diametro equivalente, ϕ_{eq} . Se n1 è il numero di barre di diametro ϕ 1 ed n2 è il numero di barre di diametro ϕ 2, si raccomanda di utilizzare l'espressione sequente:

$$\phi_{eq} = \frac{n_1 \phi_1^2 + n_2 \phi_2^2}{n_1 \phi_1 + n_2 \phi_2}$$

c è il ricoprimento dell'armatura;

k1 = 0,8 per barre ad aderenza migliorata,

= 1,6 per barre lisce;

k2 = 0,5 nel caso di flessione semplice,

= 1,0 nel caso di trazione semplice.

In caso di trazione eccentrica, o per singole parti di sezione, si raccomanda di utilizzare valori intermedi di k2, che possono essere calcolati con la relazione:

$$k_2 = (\varepsilon_1 + \varepsilon_2)/2\varepsilon_1$$

in cui ϵ_1 ed ϵ_2 sono rispettivamente la più grande e la più piccola deformazione di trazione alle estremità della sezione considerata, calcolate per sezione fessurata.

k3 = 3,4;

k4 = 0,425.

Verifiche delle tensioni di esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	40 di 117

Per calcestruzzo classe (32/40)

- combinazione rara $\sigma_{c,ad} = 0.60 fck = 19.92 \ MPa$

combinazione quasi permanente $\sigma_{c,ad} = 0.45$ fck = 14.94 MPa

Tensione massima dell'acciaio in condizioni di esercizio

la tensione massima σs , per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

- combinazione rara $\sigma s < 0.80 \text{ fyk} = 0.80 \text{ *}450 = 360 \text{ MPa}$

Coefficienti utilizzati nel calcolo

8.1.7 N.T.C. 2018 (A1"+"M1"+"R3)

Simbologia adottata

γ_{Gsfav} Coefficiente parziale sfavorevole sulle azioni permanenti

γ_{Gfav} Coefficiente parziale favorevole sulle azioni permanenti

γ_{Qsfav} Coefficiente parziale sfavorevole sulle azioni variabili

γ_{Qfav} Coefficiente parziale favorevole sulle azioni variabili

 $\gamma_{tan\phi'}$ Coefficiente parziale di riduzione dell'angolo di attrito drenato

 $\gamma_{c'}$ Coefficiente parziale di riduzione della coesione drenata

 γ_{cu} Coefficiente parziale di riduzione della coesione non drenata

 γ_{qu} Coefficiente parziale di riduzione del carico ultimo

 γ_{γ} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto		Combinazioni statiche			Combi	nazioni sisr	niche		
			HYD	UPL	EQU	A1	A2	EQU	A1	A2
Permanenti strutturali	Favolevoli	γG1,fav	0.90	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Permanenti strutturali	Sfavolevoli	γG1,sfav	1.30	1.10	1.30	1.30	1.00	1.00	1.00	1.00
Permanenti non strutturali	Favolevoli	γG2,fav	0.90	0.00	0.00	0.00	0.00	1.00	0.00	0.00
Permanenti non strutturali	Sfavolevoli	γG2,sfav	1.30	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili	Favolevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili	Sfavolevoli	γQ,sfav	1.50	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili da traffico	Favolevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili da traffico	Sfavolevoli	γQT,sfav	1.50	1.50	1.35	1.35	1.15	1.00	1.00	1.00

Coeff. parziali per i parametri geotecnici del terreno

Parametro	Combinazi	oni statiche	Combinazio	oni sismiche
	M1	M2	M1	M2

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	41 di 117

Parametro		Combinazio	ni statiche	Combinazioni sismich		
		M1	M1 M2		M2	
Tangente dell'angolo di attrito	γtan(φ')	1.00	1.25	1.00	1.00	
Coesione efficace	γc'	1.00	1.25	1.00	1.00	
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00	
Peso nell'unita di volume	γγ	1.00	1.00	1.00	1.00	

Coeff. parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Con	nbinazioni stat	iche	Combinazioni sismiche			
	R1	R1 R2 R3			R2	R3	
Capacità portante			1.40			1.20	
Scorrimento			1.10			1.00	
Resistenza terreno a valle			1.40			1.20	
Stabilità fronte di scavo		1.10			1.20		

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV **FOGLIO** 433 512_v2 42 di 117 I-1 B_1 1

9 MODELLO DI CALCOLO: cordolo portabarriera tipo A, H 70 cm

Di seguito viene indicato il modello di calcolo considerato per il muro di tipo A. Tale geometria è la più rappresentativa per il tratto in esame.

Successivamente vengono riportati tabulato di calcolo, input, output, verifiche strutturali e geotecniche per fondazione e paramento agli stati limite ultimo e di esercizio secondo la normativa vigente.

Dati

<u>Materiali</u>

Simbologia adottata

Indice materiale Descr Descrizione del materiale

Calcestruzzo armato

Classe di resistenza del cls Tipo

Classe di resistenza dell'acciaio Tipo acciaio

Peso specifico, espresso in [kN/mc]

Resistenza caratteristica a compressione, espressa in [kg/cmq] \dot{R}_{ck}

Modulo elastico, espresso in [kg/cmq]

Coeff, di Poisson

Coeff. di omogenizzazione acciaio/cls

ntc Coeff. di omogenizzazione cls teso/compresso

Calcestruzzo armato

n°	Descr	Tipo	Tipo acciaio	γ	R _{ck}	E	ν	n	ntc
				[kN/mc]	[kg/cmq]	[kg/cmq]			
1	Cls Armato	C32/40	B450C	25,0000	407,88	343054	0.30	15.00	0.50

Geometria profilo terreno a monte del muro

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

ascissa del punto espressa in [m] ordinata del punto espressa in [m] inclinazione del tratto espressa in [°]

n°	Х	Y	Α
	[m]	[m]	[°]
1	0,00	0,00	0.000
2	10,00	0,00	0.000

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.000 [°]

Geometria muro

Geometria paramento e fondazione

Paramento Materiale

Cls Armato

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

	COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO	433	I-1	B_1	512_v2	1	43 di 117

Altezza paramento	1,20	[m]
Altezza paramento libero	0,70	[m]
Spessore in sommità	0,70	[m]
Spessore all'attacco con la fondazione	0,70	[m]
Inclinazione paramento esterno	0,00	[°]
Inclinazione paramento interno	0,00	[°]
Fondazione		
Materiale	Cls Armato	
Lunghamma managla di valla	0.20	[ma]

<u>Fondazione</u>		
Materiale	Cls Armato	
Lunghezza mensola di valle	0,30	[m]
Lunghezza mensola di monte	1,30	[m]
Lunghezza totale	2,30	[m]
Inclinazione piano di posa	0,00	[°]
Spessore	0,50	[m]
Spessore magrone	0,10	[m]

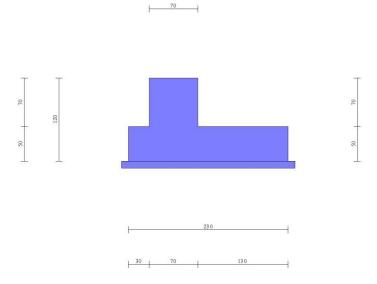


Fig. 1 - Sezione quotata del muro

Descrizione terreni

Parametri di resistenza

Simbologia adottata

Indice del terreno Descrizione terreno Descr

Peso di volume del terreno espresso in [kN/mc] Peso di volume saturo del terreno espresso in [kN/mc] Angolo d'attrito interno espresso in [°]

Angolo d'attrito terra-muro espresso in [°]

Coesione espressa in [kg/cmq]

Ca Adesione terra-muro espressa in [kg/cmq]

Per calcolo portanza con il metodo di Bustamante-Doix

Cesp Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix)

Tensione tangenziale limite, espressa in [kg/cmq]

n°	Descr	γ	γsat	ф	δ	С	ca	Cesp	τΙ	
		[kN/mc]	[kN/mc]	[°]	[°]	[kg/cmq]	[kg/cmq]		[kg/cmq]	
1	rilevato	19,0000	19,0000	34.000	0.000	0,00	0,00			
2	sabbia ghiaiosa	19,5000	19,5000	33.000	22.000	0,00	0,00			

Stratigrafia

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV **FOGLIO** 433 512_v2 44 di 117 I-1 B_1

Simbologia adottata

Indice dello strato Spessore dello strato espresso in [m] H

Inclinazione espressa in [°]

 α
 Inclinazione espresso

 Terreno
 Terreno dello strato

Kwn, Kwt Costante di Winkler normale e tangenziale alla superficie espressa in Kg/cm²/cm

Per calcolo pali (solo se presenti)
Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm

Coefficiente di spinta

Cesp Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di Bustamante-Doix)
Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato').

Kst_{sta}, Kst_{sis} Coeff. di spinta statico e sismico

n°	Н	α	Terreno	Kwn	Kwt	Kw	Ks	Cesp	Kst _{sta}	Kst _{sis}
	[m]	[°]		[Kg/cm³]	[Kg/cm³]	[Kg/cm³]				
1	1,00	0.000	rilevato	0.000	0.000	0.000	0.000	1.000	0.000	0.000
2	5.00	0.000	sabbia ghiaiosa	2.000	8,000	3,292	0.000	1.000	0.000	0.000

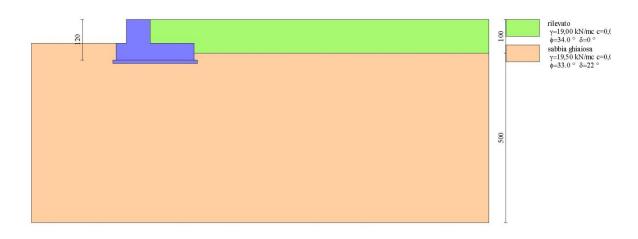


Fig. 2 - Stratigrafia

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario.

Ascissa del punto di applicazione del carico concentrato espressa in [m]

Componente orizzontale del carico concentrato espressa in [kN] Componente verticale del carico concentrato espressa in [kN]

Momento espresso in [kNm] Ascissa del punto iniziale del carico ripartito espressa in [m]

 $F_y\\ M\\ X_i\\ X_f\\ Q_i\\ Q_f$ Ascissa del punto finale del carico ripartito espressa in [m] Intensità del carico per $x=X_i$ espressa in [kN] Intensità del carico per $x=X_f$ espressa in [kN]

Condizione nº 1 (C01 - Azione da traffico) - VARIABILE

Coeff. di combinazione $\Psi_0=0.75 - \Psi_1=0.75 - \Psi_2=0.20$

Carichi sul muro

n°	Tipo	Destinazione	х	Fx	Fy	М	Xi	Xf	Qi	Qf
			[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Concentrato	Paramento	0,00	10,0000	0,0000					

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

LOTTO DOCUMENTO COMMESSA FLABORATO RFV FOGLIO 433 I-1 B_1 512_v2 1 45 di 117

Carichi sul terreno

n°	Tipo	X	Fx	Fy	М	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Distribuito					0,01	7,00	20,0000	20,0000

Condizione nº 2 (CO2 - Peso proprio sicurvia) - PERMANENTE

Carichi sul muro

n°	Tipo	Destinazione	X	Fx	Fy	М	Xi	Xf	Qi	Qf
			[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Concentrato	Paramento	0.00	0.0000	1,5000					

Condizione nº 3 (C03 - Peso proprio cordolo) - PERMANENTE

Carichi sul muro

n°	Tipo	Destinazione	Х	Fx	Fy	М	Xi	Xf	Qi	Qf
			[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Concentrato	Paramento	0,00	0,0000	0,0100					

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2018 (D.M. 17.01.2018)

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto			Comb	inazioni sta	itiche		Combi	nazioni sisr	niche
			HYD	UPL	EQU	A1	A2	EQU	A1	A2
Permanenti strutturali	Favolevoli	γG1,fav	0.90	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Permanenti strutturali	Sfavolevoli	γG1,sfav	1.30	1.10	1.30	1.30	1.00	1.00	1.00	1.00
Permanenti non strutturali	Favolevoli	γG2,fav	0.90	0.00	0.00	0.00	0.00	1.00	0.00	0.00
Permanenti non strutturali	Sfavolevoli	γG2,sfav	1.30	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili	Favolevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili	Sfavolevoli	γQ,sfav	1.50	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili da traffico	Favolevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili da traffico	Sfavolevoli	γQT,sfav	1.50	1.50	1.35	1.35	1.15	1.00	1.00	1.00

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazior	ni statiche	Combinazioni sismic	
		M1	M2	M1	M2
Tangente dell'angolo di attrito	γtan(φ')	1.00	1.25	1.00	1.00
Coesione efficace	γc'	1.00	1.25	1.00	1.00
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00
Peso nell'unita di volume	γ _γ	1.00	1.00	1.00	1.00

Coeff. parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Com	nbinazioni stat	iche	Combinazioni sismiche			
	R1	R2	R3	R1	R2	R3	
Capacità portante			1.40			1.20	
Scorrimento			1.10			1.00	
Resistenza terreno a valle			1.40			1.20	
Stabilità fronte di scavo		1.10			1.20		

Descrizione combinazioni di carico

Simbologia adottata

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione

Combinazione nº 1 - STR A1-M1-R3 H + V

Condizione γ Ψ Effetto	Condizione	γ	Ψ	Effetto	
------------------------	------------	---	---	---------	--

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 46 di 117

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

Combinazione nº 2 - STR A1-M1-R3 H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Combinazione nº 3 - STR A1-M1-R3 H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

Combinazione nº 4 - STR A1-M1-R3 H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Combinazione nº 5 - GEO A2-M2-R2 H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

Combinazione nº 6 - GEO A2-M2-R2 H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Combinazione nº 7 - GEO A2-M2-R2 H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 47 di 117

Combinazione nº 8 - GEO A2-M2-R2 H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Combinazione nº 9 - EQU H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

Combinazione nº 10 - EQU H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Combinazione nº 11 - EQU H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

Combinazione nº 12 - EOU H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio sicurvia	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Dati sismici

Comune Ferrara
Provincia Ferrara
Regione Emilia Romagna
Latitudine 44.837894
Longitudine 11.620440

Indice punti di interpolazione 15402 - 15403 - 15181 - 15180

Vita nominale 50 anni Classe d'uso III

Tipo costruzione Normali affollamenti

Vita di riferimento 75 anni

	Simbolo	U.M.	SLU	SLE
Accelerazione al suolo	ag	[m/s ²]	1.525	0.551
Accelerazione al suolo	a _q /q	[%]	0.155	0.056

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	48 di 117

	Simbolo	U.M.		SLU	SLE
Massimo fattore amplificazione spettro orizzontale	F0			2.572	2.487
Periodo inizio tratto spettro a velocità costante	Tc*			0.277	0.282
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		С	1.460	1.500
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	
Coeff. di riduzione	βm			0.380	0.470
Coeff. di riduzione verifica a ribaltamento	βm			0.000	0.000
Coeff. di intensità sismica orizzontale	kh	[%]		8.626	3.959
Coeff. di intensità sismica verticale	k _v =0.50 k _h	[%]		4.313	1.979

Forma diagramma incremento sismico Stessa forma del diagramma statico

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

LOTTO COMMESSA FLABORATO DOCUMENTO RFV FOGLIO 433 I-1 512_v2 1 49 di 117 B_1

Opzioni di calcolo

<u>Spinta</u> Metodo di calcolo della spinta Culmann Tipo di spinta Spinta attiva Terreno a bassa permeabilità Non attiva Superficie di spinta limitata Non attiva

Capacità portante

Metodo di calcolo della portanza Meyerhof Criterio di media calcolo del terreno equivalente (terreni stratificati) Ponderata Criterio di riduzione per eccentricità della portanza Meyerhof Criterio di riduzione per rottura locale (punzonamento) Nessuna

Larghezza fondazione nel terzo termine della formula del carico limite $(0.5B\gamma N_{\nu})$ Larghezza effettiva (B) Fattori di forma e inclinazione del carico Solo i fattori di inclinazione

Stabilità globale

Metodo di calcolo della stabilità globale Fellenius

Partecipazione spinta passiva terreno antistante 0.00 Partecipazione resistenza passiva dente di fondazione 50.00

Spostamenti

Non è stato richiesto il calcolo degli spostamenti

Cedimenti

Non è stato richiesto il calcolo dei cedimenti

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

DOCUMENTO COMMESSA LOTTO ELABORATO RFV FOGLIO 433 I-1 B_1 512_v2 1 50 di 117

Risultati per combinazione

Spinta

Simbologia adottata

Indice della combinazione

 $\begin{array}{l} Sp \\ P_{Sp} \\ \alpha_{Sp} \\ Sps \\ P_{Sps} \\ Swm \\ P_{Swm} \end{array}$

Ponto di acplicazione della spinta statica, espressa in [m]
Inclinazione spinta, espressa in [°]

Punto di applicazione dell'incremento di spinta sismica, espressa in [kN]
Punto di applicazione dell'incremento di spinta sismica, espressa in [m]

Punto di applicazione dell'incremento di spinta sistinica, espressa in [m]
Spinta falda, espressa in [kN]
Punto di applicazione della spinta della falda, espressa in [m]
Spinta falda da valle, espressa in [kN]
Punto di applicazione della spinta della falda da valle, espressa in [m]
Sottospinta falda, espressa in [kN] Swv Pswv Ss D

Resistenza diagramma correttivo, espressa in [kN] Punto di applicazione del diagramma correttivo, espressa in [m]

n°	Sp	αsp	P _{Sp}	Sps	P _{Sps}	Swm	P _{Swm}	Swv	P _{Swv}	Ss	D	P _D
	[kN]	[°]	[m]	[kN]	[m]	[kN]	[m]	[kN]	[m]	[kN]	[kN]	[m]
1	10,39	0.00	1,30 -0,67	2,32	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
2	5,07	0.00	1,30 -0,74	1,14	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
3	10,39	0.00	1,30 -0,67	1,44	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
4	5,07	0.00	1,30 -0,74	0,71	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
5	10,39	0.00	1,30 -0,67	2,32	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
6	5,07	0.00	1,30 -0,74	1,14	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
7	10,39	0.00	1,30 -0,67	1,44	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
8	5,07	0.00	1,30 -0,74	0,71	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
9	10,39	0.00	1,30 -0,67	3,59	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
10	5,07	0.00	1,30 -0,74	1,76	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
11	10,39	0.00	1,30 -0,67	2,29	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
12	5,07	0.00	1,30 -0,74	1,13	1,30 -0,80	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00

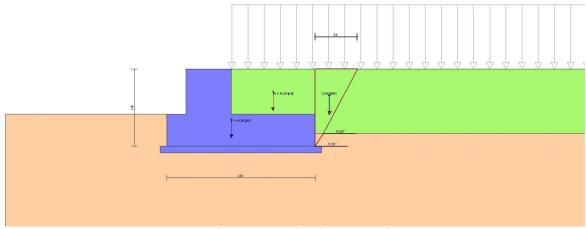


Fig. 3 - Cuneo di spinta statico (Combinazione nº 1)

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 51 di 117

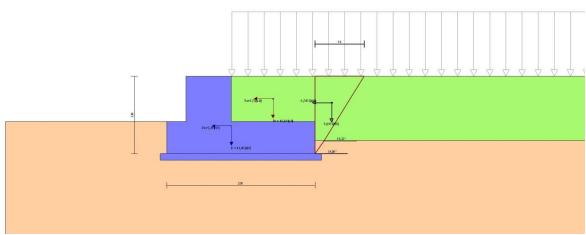


Fig. 4 - Cuneo di spinta sismico (Combinazione nº 1)

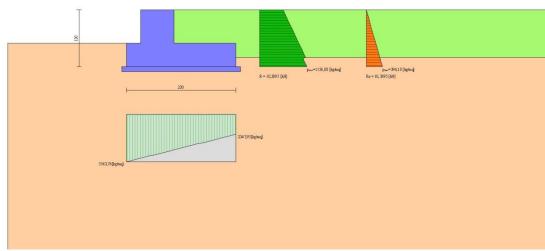


Fig. 5 - Diagramma delle pressioni agenti sull'opera (combinazione statica) (Combinazione nº 1)

BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

ELABORATO COMMESSA LOTTO DOCUMENTO RFV **FOGLIO** 433 I-1 B_1 512_v2 1 52 di 117

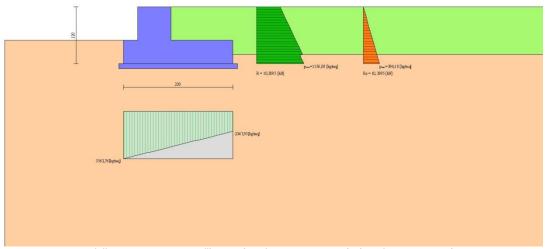


Fig. 6 - Diagramma delle pressioni agenti sull'opera (combinazione sismica) (Combinazione nº 1)

<u>Forze</u>

Simbologia adottata

n° Pm

Indice della combinazione
Peso muro, espressa in [kN]
Inerzia muro orizzontale e verticale, espressa in [kN]

Baricentro muro, espressa in [m] Peso contrafforti, espressa in [kN]

Inerzia contrafforti orizzontale e verticale, espressa in [kN] Baricentro contrafforti, espressa in [m] Peso terrapieno, espressa in [kN]

Gm Pc Ic Gc Pt It Gt F Inerzia terrapieno orizzontale e verticale, espressa in [kN]

Baricentro terrapieno, espressa in [m]

Forze agenti in direzione orizzontale e verticale, espressa in [kN] Peso terreno sulla fondazione di valle, espressa in [kN] Peso acqua sulla fondazione di valle, espressa in [kN] Ptv

n°	Pm	Im	Gm	Pc	Ic	Gc	Pt	It	Gt	F	Ptv	Pfv
	[kN]	[kN]	[m]	[kN]	[kN]	[m]	[kN]	[kN]	[m]	[kN]	[kN]	[kN]
1	41,00	3,54 1,77	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	43,09	3,72 1,86	0,65 -0,35	10,13 1,51	0,00	0,00
2	41,00	3,54 1,77	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	22,45	1,94 0,97	0,65 -0,35	2,13 1,51	0,00	0,00
3	41,00	3,54 -1,77	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	43,09	3,72 -1,86	0,65 -0,35	10,13 1,51	0,00	0,00
4	41,00	3,54 -1,77	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	22,45	1,94 -0,97	0,65 -0,35	2,13 1,51	0,00	0,00
5	41,00	3,54 1,77	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	43,09	3,72 1,86	0,65 -0,35	10,13 1,51	0,00	0,00
6	41,00	3,54 1,77	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	22,45	1,94 0,97	0,65 -0,35	2,13 1,51	0,00	0,00
7	41,00	3,54 -1,77	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	43,09	3,72 -1,86	0,65 -0,35	10,13 1,51	0,00	0,00
8	41,00	3,54 -1,77	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	22,45	1,94 -0,97	0,65 -0,35	2,13 1,51	0,00	0,00
9	41,00	5,31 2,65	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	43,09	5,58 2,79	0,65 -0,35	10,20 1,51	0,00	0,00
10	41,00	5,31 2,65	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	22,45	2,90 1,45	0,65 -0,35	2,20 1,51	0,00	0,00
11	41,00	5,31 -2,65	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	43,09	5,58 -2,79	0,65 -0,35	10,20 1,51	0,00	0,00
12	41,00	5,31 -2,65	0,00 -0,77	0,00	0,00 0,00	0,00 0,00	22,45	2,90 -1,45	0,65 -0,35	2,20 1,51	0,00	0,00

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV **FOGLIO** 433 512_v2 53 di 117 I-1 B_1

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Indice della combinazione Tipo Tipo combinazione Combinazione sismica Sisma

Coeff. di sicurezza allo scorrimento Coeff. di sicurezza al ribaltamento FS_{SCO} FS_{RIB} Coeff. di sicurezza a carico limite FS_{STAB} Coeff. di sicurezza a stabilità globale Coeff. di sicurezza a sifonamento FS_{HYD} Coeff. di sicurezza a sollevamento

n°	Tipo	Sismica	FSsco	FS _{RIB}	FSQLIM	FS _{STAB}	FS _{HYD}	FSUPL
1	STR A1-M1-R3	H + V	1.198		6.239			
2	STR A1-M1-R3	H + V	1.980		14.453			
3	STR A1-M1-R3	H - V	1.134		6.156			
4	STR A1-M1-R3	H - V	1.878		14.974			
5	GEO A2-M2-R2	H + V				1.877		
6	GEO A2-M2-R2	H + V				2.639		
7	GEO A2-M2-R2	H - V				1.848		
8	GEO A2-M2-R2	H - V				2.578		
9	EQU	H + V		3.735				
10	EQU	H + V		7.244				
11	EQU	H - V		2.903				
12	EQU	H - V		4.818				

Verifica a scorrimento fondazione

Simbologia adottata

Indice combinazione

Resistenza allo scorrimento per attrito, espresso in [kN] Rpt Rps Resistenza passiva terreno antistante, espresso in [kN] Resistenza passiva sperone, espresso in [kN]

Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN] Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN] Rp Rt

Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN]

Carico parallelo al piano di posa, espresso in [kN] Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	Т	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
1	36,05	0,00	0,00			36,05	30,09	1.198
2	27,35	0,00	0,00			27,35	13,81	1.980
3	33,12	0,00	0,00			33,12	29,21	1.134
4	25,14	0,00	0,00			25,14	13,38	1.878

Verifica a carico limite

Simbologia adottata

Indice combinazione

Ν Carico verticale totale, espresso in [kN] Qu Qd FS carico limite del terreno, espresso in [kN] Portanza di progetto, espresso in [kN]

Fattore di sicurezza (rapporto tra portanza di progetto e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kN]	[kN]	[kN]	
1	89,23	556,69	463,91	6.239
2	67,70	978,39	815,32	14.453
3	81,97	504,60	420,50	6.156
4	62,22	931,76	776,47	14.974

Dettagli calcolo portanza

Simbologia adottata

Indece combinazione

Nc, Nq, N γ Fattori di capacità portante

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV **FOGLIO** 433 512_v2 54 di 117 I-1 B_1

ic, iq, i γ Fattori di inclinazione del carico

dc, dq, dγ gc, gq, gγ bc, bq, bγ Fattori di profondità del piano di posa Fattori di inclinazione del profilo topografico bc, bq, bγ Fattori di inclinazione del piano di posa sc, sq, sγFattori di forma della fondazione

pc, pq, pγ Fattori di riduzione per punzonamento secondo Vesic

Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.58yN, viene moltiplicato per questo $\begin{array}{c} r_{\gamma} \\ \text{fattore} \end{array}$

Affondamento del piano di posa, espresso in [m] Larghezza fondazione ridotta, espresso in [m] Altezza del cuneo di rottura, espresso in [m]

Peso di volume del terreno medio, espresso in [kN/mc] Angolo di attrito del terreno medio, espresso in [°]

c Coesione del terreno medio, espresso in [kg/cmq]

Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Meyerhof).

n°	Nc Nq Ny	ic iq iγ	dc dq dγ	gc gq gy	bc bq bγ	sc sq sγ	pc pq py	ľγ	D	B' H	Υ	ф	С
									[m]	[m]	[kN/mc]	[°]	[kg/cmq]
1	38.638 26.092 26.166	0.629 0.629 0.189	1.080 1.040 1.040	 		 		0.985	0,50	2,30 2,12	19,50	33.00	0,00
2	38.638 26.092 26.166	0.760 0.760 0.423	1.080 1.040 1.040	 	 	 	 	0.985	0,50	2,30 2,12	19,50	33.00	0,00
3	38.638 26.092 26.166	0.612 0.612 0.165	1.080 1.040 1.040	 	 	 		0.985	0,50	2,30 2,12	19,50	33.00	0,00
4	38.638 26.092 26.166	0.748 0.748 0.400	1.080 1.040 1.040	 	 	 		0.985	0,50	2,30 2,12	19,50	33.00	0,00

Verifica a ribaltamento

Simbologia adottata

Indice combinazione

Ms Momento stabilizzante, espresso in [kNm] Mr Momento ribaltante, espresso in [kNm]

Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)

n°	Ms	Mr	FS
	[kNm]	[kNm]	
9	120,36	32,23	3.735
10	84,10	11,61	7.244
11	113,10	38,96	2.903
12	79,05	16,41	4.818

Verifica stabilità globale muro + terreno

Simbologia adottata

Ic Indice combinazione

Centro superficie di scorrimento, espresso in [m]

Raggio, espresso in [m]

Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
5	-0,50; 1,17	2,99	1.877
6	-0,50; 1,51	3,26	2.639
7	-0,50; 1,17	2,99	1.848
8	-0,50; 1,51	3,26	2.578

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) W

peso della striscia espresso in [kN] carico sulla striscia espresso in [kN] Qу

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [kg/cmq]

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO ELABORATO DOCUMENTO REV. FOGLIO 433 I-1 B_1 512_v2 1 55 di 117

- b larghezza della striscia espressa in [m] u pressione neutra lungo la base della striscia espressa in [kg/cmq] Tx; Ty Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kg/cmq]

Combinazione nº 5 - GEO A2-M2-R2 H + V

n°	W	Qy	b	α	ф	С	u	Тх; Ту
	[kN]	[kN]	[m]	[°]	[°]	[kg/cmq]	[kg/cmq]	[kN]
1	0,73	4,08	2,26 - 0,20	61.631	34.000	0,00	0,000	
2	2,04	4,08	0,20	55.309	34.000	0,00	0,000	
3	3,06	4,08	0,20	48.898	34.000	0,00	0,000	
4	3,89	4,08	0,20	43.239	33.000	0,00	0,000	
5	4,77	4,08	0,20	38.071	33.000	0,00	0,000	
6	5,76	4,08	0,20	33.250	33.000	0,00	0,000	
7	6,25	4,08	0,20	28.683	33.000	0,00	0,000	
8	6,66	4,08	0,20	24.309	33.000	0,00	0,000	
9	6,99	4,08	0,20	20.082	33.000	0,00	0,000	
10	7,26	4,08	0,20	15.967	33.000	0,00	0,000	
11	7,46	4,08	0,20	11.935	33.000	0,00	0,000	
12	8,40	0,06	0,20	7.962	33.000	0,00	0,000	
13	8,54	1,51	0,20	4.028	33.000	0,00	0,000	
14	8,57	0,00	0,20	0.113	33.000	0,00	0,000	
15	6,74	0,00	0,20	-3.801	33.000	0,00	0,000	
16	4,87	0,00	0,20	-7.734	33.000	0,00	0,000	
17	4,16	0,00	0,20	-11.703	33.000	0,00	0,000	
18	3,96	0,00	0,20	-15.731	33.000	0,00	0,000	
19	3,70	0,00	0,20	-19.841	33.000	0,00	0,000	
20	3,37	0,00	0,20	-24.060	33.000	0,00	0,000	
21	2,97	0,00	0,20	-28.425	33.000	0,00	0,000	
22	2,49	0,00	0,20	-32.979	33.000	0,00	0,000	
23	1,91	0,00	0,20	-37.783	33.000	0,00	0,000	
24	1,22	0,00	0,20	-42.928	33.000	0,00	0,000	
25	0,40	0,00	-2,84 - 0,20	-47.001	33.000	0,00	0,000	

Combinazione nº 6 - GEO A2-M2-R2 H + V

n°	w	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kg/cmq]	[kg/cmq]	[kN]
1	0,68	0,85	2,40 - 0,21	57.786	34.000	0,00	0,000	
2	1,92	0,85	0,21	52.476	34.000	0,00	0,000	
3	2,94	0,85	0,21	46.686	34.000	0,00	0,000	
4	3,78	0,85	0,21	41.471	34.000	0,00	0,000	
5	4,49	0,85	0,21	36.651	33.000	0,00	0,000	
6	5,60	0,85	0,21	32.118	33.000	0,00	0,000	
7	6,22	0,85	0,21	27.801	33.000	0,00	0,000	
8	6,65	0,85	0,21	23.652	33.000	0,00	0,000	
9	7,00	0,85	0,21	19.630	33.000	0,00	0,000	
10	7,28	0,85	0,21	15.707	33.000	0,00	0,000	
11	7,50	0,85	0,21	11.859	33.000	0,00	0,000	
12	8,29	0,20	0,21	8.065	33.000	0,00	0,000	
13	8,64	1,51	0,21	4.306	33.000	0,00	0,000	
14	8,68	0,00	0,21	0.566	33.000	0,00	0,000	
15	7,08	0,00	0,21	-3.172	33.000	0,00	0,000	
16	4,85	0,00	0,21	-6.923	33.000	0,00	0,000	
17	4,10	0,00	0,21	-10.705	33.000	0,00	0,000	
18	3,90	0,00	0,21	-14.534	33.000	0,00	0,000	
19	3,64	0,00	0,21	-18.432	33.000	0,00	0,000	
20	3,31	0,00	0,21	-22.421	33.000	0,00	0,000	
21	2,91	0,00	0,21	-26.528	33.000	0,00	0,000	
22	2,43	0,00	0,21	-30.789	33.000	0,00	0,000	
23	1,85	0,00	0,21	-35.250	33.000	0,00	0,000	
24	1,17	0,00	0,21	-39.974	33.000	0,00	0,000	
25	0,38	0,00	-2,92 - 0,21	-43.358	33.000	0,00	0,000	

Combinazione nº 7 - GEO A2-M2-R2 H - V

n°	W	Qy	b	α	ф	С	u	Тх; Ту
	[kN]	[kN]	[m]	[°]	[°]	[kg/cmq]	[kg/cmq]	[kN]
1	0,73	4,08	2,26 - 0,20	61.631	34.000	0,00	0,000	
2	2,04	4,08	0,20	55.309	34.000	0,00	0,000	

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 56 di 117

n°	w	Qy	b	α	ф	С	u	Тх; Ту
	[kN]	[kN]	[m]	[°]	[°]	[kg/cmq]	[kg/cmq]	[kN]
3	3,06	4,08	0,20	48.898	34.000	0,00	0,000	
4	3,89	4,08	0,20	43.239	33.000	0,00	0,000	
5	4,77	4,08	0,20	38.071	33.000	0,00	0,000	
6	5,76	4,08	0,20	33.250	33.000	0,00	0,000	
7	6,25	4,08	0,20	28.683	33.000	0,00	0,000	
8	6,66	4,08	0,20	24.309	33.000	0,00	0,000	
9	6,99	4,08	0,20	20.082	33.000	0,00	0,000	
10	7,26	4,08	0,20	15.967	33.000	0,00	0,000	
11	7,46	4,08	0,20	11.935	33.000	0,00	0,000	
12	8,40	0,06	0,20	7.962	33.000	0,00	0,000	
13	8,54	1,51	0,20	4.028	33.000	0,00	0,000	
14	8,57	0,00	0,20	0.113	33.000	0,00	0,000	
15	6,74	0,00	0,20	-3.801	33.000	0,00	0,000	
16	4,87	0,00	0,20	-7.734	33.000	0,00	0,000	
17	4,16	0,00	0,20	-11.703	33.000	0,00	0,000	
18	3,96	0,00	0,20	-15.731	33.000	0,00	0,000	
19	3,70	0,00	0,20	-19.841	33.000	0,00	0,000	
20	3,37	0,00	0,20	-24.060	33.000	0,00	0,000	
21	2,97	0,00	0,20	-28.425	33.000	0,00	0,000	
22	2,49	0,00	0,20	-32.979	33.000	0,00	0,000	
23	1,91	0,00	0,20	-37.783	33.000	0,00	0,000	
24	1,22	0,00	0,20	-42.928	33.000	0,00	0,000	
25	0,40	0,00	-2,84 - 0,20	-47.001	33.000	0,00	0,000	

Combinazione nº 8 - GEO A2-M2-R2 H - V

n°	W	Qy	b	α	ф	С	u	Тх; Ту
	[kN]	[kN]	[m]	[°]	[°]	[kg/cmq]	[kg/cmq]	[kN]
1	0,68	0,85	2,40 - 0,21	57.786	34.000	0,00	0,000	
2	1,92	0,85	0,21	52.476	34.000	0,00	0,000	
3	2,94	0,85	0,21	46.686	34.000	0,00	0,000	
4	3,78	0,85	0,21	41.471	34.000	0,00	0,000	
5	4,49	0,85	0,21	36.651	33.000	0,00	0,000	
6	5,60	0,85	0,21	32.118	33.000	0,00	0,000	
7	6,22	0,85	0,21	27.801	33.000	0,00	0,000	
8	6,65	0,85	0,21	23.652	33.000	0,00	0,000	
9	7,00	0,85	0,21	19.630	33.000	0,00	0,000	
10	7,28	0,85	0,21	15.707	33.000	0,00	0,000	
11	7,50	0,85	0,21	11.859	33.000	0,00	0,000	
12	8,29	0,20	0,21	8.065	33.000	0,00	0,000	
13	8,64	1,51	0,21	4.306	33.000	0,00	0,000	
14	8,68	0,00	0,21	0.566	33.000	0,00	0,000	
15	7,08	0,00	0,21	-3.172	33.000	0,00	0,000	
16	4,85	0,00	0,21	-6.923	33.000	0,00	0,000	
17	4,10	0,00	0,21	-10.705	33.000	0,00	0,000	
18	3,90	0,00	0,21	-14.534	33.000	0,00	0,000	
19	3,64	0,00	0,21	-18.432	33.000	0,00	0,000	
20	3,31	0,00	0,21	-22.421	33.000	0,00	0,000	
21	2,91	0,00	0,21	-26.528	33.000	0,00	0,000	
22	2,43	0,00	0,21	-30.789	33.000	0,00	0,000	
23	1,85	0,00	0,21	-35.250	33.000	0,00	0,000	
24	1,17	0,00	0,21	-39.974	33.000	0,00	0,000	
25	0,38	0,00	-2,92 - 0,21	-43.358	33.000	0,00	0,000	

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

LOTTO DOCUMENTO COMMESSA ELABORATO RFV FOGLIO 433 I-1 B_1 512_v2 1 57 di 117

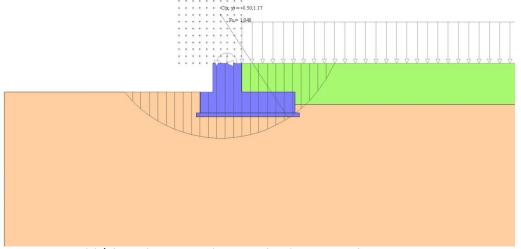


Fig. 7 - Stabilità fronte di scavo - Cerchio critico (Combinazione nº 7)

Sollecitazioni

Simbologia adottata

- Sforzo normale, espresso in [kN]. Positivo se di compressione.

 Taglio, espresso in [kN]. Positivo se diretto da monte verso valle

 Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Paramento

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	Х	N	T	М
	[m]	[kN]	[kN]	[kNm]
1	0,00	1,51	10,13	6,00
2	-0,04	2,12	10,38	6,36
3	-0,07	2,74	10,64	6,73
4	-0,11	3,35	10,91	7,10
5	-0,14	3,96	11,20	7,49
6	-0,18	4,57	11,50	7,89
7	-0,21	5,18	11,81	8,30
8	-0,24	5,80	12,14	8,71
9	-0,28	6,41	12,48	9,15
10	-0,32	7,02	12,83	9,59
11	-0,35	7,63	13,20	10,04
12	-0,39	8,25	13,58	10,51
13	-0,42	8,86	13,97	10,99
14	-0,45	9,47	14,38	11,49
15	-0,49	10,08	14,79	12,00
16	-0,53	10,70	15,22	12,53
17	-0,56	11,31	15,67	13,07
18	-0,59	11,92	16,12	13,62
19	-0,63	12,53	16,59	14,20
20	-0,66	13,15	17,06	14,78
21	-0,70	13,76	17,56	15,39

Combinazione nº 2 - STR A1-M1-R3 H + V

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	1.51	2.13	1.20

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 58 di 117

n°	Х	N	T	М
	[m]	[kN]	[kN]	[kNm]
2	-0,04	2,12	2,23	1,28
3	-0,07	2,74	2,33	1,36
4	-0,11	3,35	2,44	1,44
5	-0,14	3,96	2,56	1,53
6	-0,18	4,57	2,70	1,62
7	-0,21	5,18	2,84	1,72
8	-0,24	5,80	2,99	1,82
9	-0,28	6,41	3,15	1,92
10	-0,32	7,02	3,31	2,04
11	-0,35	7,63	3,49	2,16
12	-0,39	8,25	3,68	2,28
13	-0,42	8,86	3,87	2,41
14	-0,45	9,47	4,07	2,55
15	-0,49	10,08	4,28	2,70
16	-0,53	10,70	4,51	2,85
17	-0,56	11,31	4,74	3,02
18	-0,59	11,92	4,97	3,18
19	-0,63	12,53	5,22	3,36
20	-0,66	13,15	5,48	3,55
21	-0,70	13,76	5,74	3,75

Combinazione nº 3 - STR A1-M1-R3 H - V

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0,00	1,51	10,13	6,00
2	-0,04	2,12	10,38	6,36
3	-0,07	2,74	10,63	6,73
4	-0,11	3,35	10,90	7,10
5	-0,14	3,96	11,18	7,49
6	-0,18	4,57	11,47	7,89
7	-0,21	5,18	11,77	8,29
8	-0,24	5,80	12,09	8,71
9	-0,28	6,41	12,41	9,14
10	-0,32	7,02	12,74	9,58
11	-0,35	7,63	13,09	10,03
12	-0,39	8,25	13,45	10,50
13	-0,42	8,86	13,81	10,97
14	-0,45	9,47	14,19	11,46
15	-0,49	10,08	14,58	11,97
16	-0,53	10,70	14,97	12,48
17	-0,56	11,31	15,38	13,01
18	-0,59	11,92	15,80	13,56
19	-0,63	12,53	16,23	14,12
20	-0,66	13,15	16,66	14,70
21	-0,70	13,76	17,11	15,29

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0,00	1,51	2,13	1,20
2	-0,04	2,12	2,22	1,28
3	-0,07	2,74	2,33	1,36
4	-0,11	3,35	2,44	1,44
5	-0,14	3,96	2,56	1,53
6	-0,18	4,57	2,69	1,62
7	-0,21	5,18	2,82	1,71
8	-0,24	5,80	2,96	1,82
9	-0,28	6,41	3,12	1,92
10	-0,32	7,02	3,28	2,03
11	-0,35	7,63	3,44	2,15
12	-0,39	8,25	3,62	2,28
13	-0,42	8,86	3,81	2,41
14	-0,45	9,47	4,00	2,54
15	-0,49	10,08	4,20	2,69
16	-0,53	10,70	4,41	2,84
17	-0,56	11,31	4,62	2,99

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	59 di 117

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
18	-0,59	11,92	4,85	3,16
19	-0,63	12,53	5,08	3,33
20	-0,66	13,15	5,32	3,51
21	-0,70	13,76	5,57	3,71

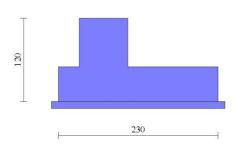


Fig. 8 - Paramento (Inviluppo)

Fondazione

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	Х	N	T	М
	[m]	[kN]	[kN]	[kNm]
1	-1,00	0,00	0,00	0,00
2	-0,93	0,00	3,12	0,12
3	-0,85	0,00	6,15	0,47
4	-0,77	0,00	9,11	1,04
5	-0,70	0,00	12,00	1,83
6	0,00	0,00	-17,84	-14,10
7	0,10	0,00	-17,47	-12,46
8	0,20	0,00	-16,77	-10,74
9	0,30	0,00	-15,93	-9,11
10	0,40	0,00	-14,95	-7,56
11	0,50	0,00	-13,84	-6,12
12	0,60	0,00	-12,59	-4,80
13	0,70	0,00	-11,20	-3,61
14	0,80	0,00	-9,68	-2,56
15	0,90	0,00	-8,02	-1,68
16	1,00	0,00	-6,22	-0,96
17	1,10	0,00	-4,28	-0,44
18	1,20	0,00	-2,21	-0,11
19	1,30	0,00	0,00	0,00

Combinazione nº 2 - STR A1-M1-R3 H + V

n°	Х	N	Т	M
	[m]	[kN]	[kN]	[kNm]
1	-1,00	0,00	0,00	0,00
2	-0,93	0,00	1,69	0,06
3	-0,85	0,00	3,35	0,25

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 60 di 117

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
4	-0,77	0,00	4,98	0,57
5	-0,70	0,00	6,59	1,00
6	0,00	0,00	-3,73	-3,35
7	0,10	0,00	-3,78	-2,99
8	0,20	0,00	-3,74	-2,62
9	0,30	0,00	-3,65	-2,25
10	0,40	0,00	-3,52	-1,89
11	0,50	0,00	-3,33	-1,55
12	0,60	0,00	-3,09	-1,22
13	0,70	0,00	-2,80	-0,93
14	0,80	0,00	-2,46	-0,67
15	0,90	0,00	-2,07	-0,44
16	1,00	0,00	-1,63	-0,26
17	1,10	0,00	-1,13	-0,12
18	1,20	0,00	-0,59	-0,03
19	1,30	0,00	0,00	0,00

Combinazione nº 3 - STR A1-M1-R3 H - V

n°	X	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-1,00	0,00	0,00	0,00
2	-0,93	0,00	2,96	0,11
3	-0,85	0,00	5,83	0,44
4	-0,77	0,00	8,63	0,98
5	-0,70	0,00	11,34	1,73
6	0,00	0,00	-22,56	-17,35
7	0,10	0,00	-21,89	-15,25
8	0,20	0,00	-20,87	-13,11
9	0,30	0,00	-19,71	-11,08
10	0,40	0,00	-18,40	-9,17
11	0,50	0,00	-16,94	-7,40
12	0,60	0,00	-15,34	-5,79
13	0,70	0,00	-13,58	-4,34
14	0,80	0,00	-11,69	-3,07
15	0,90	0,00	-9,64	-2,01
16	1,00	0,00	-7,45	-1,15
17	1,10	0,00	-5,12	-0,52
18	1,20	0,00	-2,63	-0,13
19	1,30	0,00	0,00	0,00

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-1,00	0,00	0,00	0,00
2	-0,93	0,00	1,53	0,06
3	-0,85	0,00	3,04	0,23
4	-0,77	0,00	4,51	0,51
5	-0,70	0,00	5,95	0,90
6	0,00	0,00	-6,99	-5,52
7	0,10	0,00	-6,81	-4,85
8	0,20	0,00	-6,53	-4,18
9	0,30	0,00	-6,20	-3,54
10	0,40	0,00	-5,82	-2,94
11	0,50	0,00	-5,39	-2,38
12	0,60	0,00	-4,90	-1,87
13	0,70	0,00	-4,36	-1,40
14	0,80	0,00	-3,76	-1,00
15	0,90	0,00	-3,12	-0,65
16	1,00	0,00	-2,42	-0,37
17	1,10	0,00	-1,66	-0,17
18	1,20	0,00	-0,86	-0,04
19	1,30	0,00	0,00	0,00

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

LOTTO DOCUMENTO COMMESSA ELABORATO RFV FOGLIO 433 I-1 B_1 512_v2 61 di 117

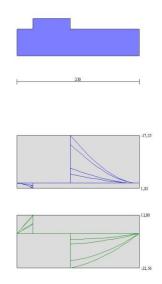


Fig. 9 - Fondazione (Inviluppo)

Verifiche strutturali

Verifiche a flessione

Elementi calcolati a trave

Simbologia adottata

n° Y indice sezione ordinata sezione espressa in [m]

larghezza sezione espresso in [cm] altezza sezione espressa in [cm]

B H Afi Afs M N Mu area ferri inferiori espressa in [cmg] area ferri superiori espressa in [cmq] momento agente espressa in [kNm] sforzo normale agente espressa in [kN] momento ultimi espresso in [kNm]

forzo normale ultimo espressa in [kN] fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0,00	100	70	5,65	11,31	6,00	1,51	306,46	77,13	51.077
2	-0,04	100	70	0,00	0,00	6,36	2,12	0,00	0,00	0.000
3	-0,07	100	70	5,65	11,31	6,73	2,74	323,11	131,38	48.036
4	-0,11	100	70	5,65	11,31	7,10	3,35	330,61	155,80	46.541
5	-0,14	100	70	5,65	11,31	7,49	3,96	337,56	178,46	45.066
6	-0,18	100	70	5,65	11,31	7,89	4,57	344,00	199,42	43.612
7	-0,21	100	70	5,65	11,31	8,30	5,18	349,92	218,71	42.181
8	-0,24	100	70	5,65	11,31	8,71	5,80	355,35	236,40	40.776
9	-0,28	100	70	5,65	11,31	9,15	6,41	360,30	252,53	39.396
10	-0,32	100	70	5,65	11,31	9,59	7,02	364,79	267,17	38.045
11	-0,35	100	70	5,65	11,31	10,04	7,63	368,84	280,38	36.723
12	-0,39	100	70	5,65	11,31	10,51	8,25	372,48	292,22	35.431
13	-0,42	100	70	5,65	11,31	10,99	8,86	375,71	302,76	34.172
14	-0,45	100	70	5,65	11,31	11,49	9,47	378,57	312,08	32.945
15	-0,49	100	70	5,65	11,31	12,00	10,08	381,07	320,22	31.752
16	-0,53	100	70	5,65	11,31	12,53	10,70	383,24	327,28	30.594
17	-0,56	100	70	5,65	11,31	13,07	11,31	385,09	333,30	29.470

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 62 di 117

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
18	-0,59	100	70	5,65	11,31	13,62	11,92	386,64	338,37	28.381
19	-0,63	100	70	5,65	11,31	14,20	12,53	387,92	342,54	27.327
20	-0,66	100	70	5,65	11,31	14,78	13,15	388,95	345,88	26.308
21	-0,70	100	70	5,65	11,31	15,39	13,76	389,74	348,45	25.323

Combinazione nº 2 - STR A1-M1-R3 H + V

n°	Υ	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0,00	100	70	5,65	11,31	1,20	1,51	460,72	579,75	383.937
2	-0,04	100	70	0,00	0,00	1,28	2,12	0,00	0,00	0.000
3	-0,07	100	70	5,65	11,31	1,36	2,74	685,79	1383,34	505.793
4	-0,11	100	70	5,65	11,31	1,44	3,35	826,27	1921,68	574.064
5	-0,14	100	70	5,65	11,31	1,53	3,96	944,62	2449,80	618.638
6	-0,18	100	70	5,65	11,31	1,62	4,57	1032,27	2915,47	637.610
7	-0,21	100	70	5,65	11,31	1,72	5,18	1100,59	3325,93	641.452
8	-0,24	100	70	5,65	11,31	1,82	5,80	1153,23	3678,28	634.460
9	-0,28	100	70	5,65	11,31	1,92	6,41	1189,44	3960,82	617.912
10	-0,32	100	70	5,65	11,31	2,04	7,02	1214,08	4183,60	595.743
11	-0,35	100	70	5,65	11,31	2,16	7,63	1234,78	4370,80	572.469
12	-0,39	100	70	5,65	11,31	2,28	8,25	1251,29	4521,77	548.260
13	-0,42	100	70	5,65	11,31	2,41	8,86	1258,13	4617,10	521.117
14	-0,45	100	70	5,65	11,31	2,55	9,47	1263,07	4685,95	494.690
15	-0,49	100	70	5,65	11,31	2,70	10,08	1266,28	4730,69	469.082
16	-0,53	100	70	5,65	11,31	2,85	10,70	1267,93	4753,68	444.373
17	-0,56	100	70	5,65	11,31	3,02	11,31	1268,19	4757,26	420.624
18	-0,59	100	70	5,65	11,31	3,18	11,92	1267,22	4743,71	397.879
19	-0,63	100	70	5,65	11,31	3,36	12,53	1265,17	4715,20	376.163
20	-0,66	100	70	5,65	11,31	3,55	13,15	1262,20	4673,76	355.487
21	-0,70	100	70	5,65	11,31	3,75	13,76	1258,43	4621,29	335.850

Combinazione nº 3 - STR A1-M1-R3 H - V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0,00	100	70	5,65	11,31	6,00	1,51	306,46	77,13	51.077
2	-0,04	100	70	0,00	0,00	6,36	2,12	0,00	0,00	0.000
3	-0,07	100	70	5,65	11,31	6,73	2,74	323,11	131,38	48.036
4	-0,11	100	70	5,65	11,31	7,10	3,35	330,61	155,80	46.544
5	-0,14	100	70	5,65	11,31	7,49	3,96	337,57	178,48	45.072
6	-0,18	100	70	5,65	11,31	7,89	4,57	344,01	199,47	43.623
7	-0,21	100	70	5,65	11,31	8,29	5,18	349,95	218,80	42.199
8	-0,24	100	70	5,65	11,31	8,71	5,80	355,39	236,55	40.802
9	-0,28	100	70	5,65	11,31	9,14	6,41	360,37	252,76	39.433
10	-0,32	100	70	5,65	11,31	9,58	7,02	364,89	267,51	38.093
11	-0,35	100	70	5,65	11,31	10,03	7,63	368,99	280,85	36.785
12	-0,39	100	70	5,65	11,31	10,50	8,25	372,67	292,85	35.508
13	-0,42	100	70	5,65	11,31	10,97	8,86	375,97	303,59	34.265
14	-0,45	100	70	5,65	11,31	11,46	9,47	378,89	313,11	33.055
15	-0,49	100	70	5,65	11,31	11,97	10,08	381,47	321,51	31.880
16	-0,53	100	70	5,65	11,31	12,48	10,70	383,72	328,83	30.739
17	-0,56	100	70	5,65	11,31	13,01	11,31	385,66	335,16	29.634
18	-0,59	100	70	5,65	11,31	13,56	11,92	387,31	340,55	28.563
19	-0,63	100	70	5,65	11,31	14,12	12,53	388,70	345,06	27.528
20	-0,66	100	70	5,65	11,31	14,70	13,15	389,83	348,76	26.527
21	-0,70	100	70	5,65	11,31	15,29	13,76	390,74	351,71	25.561

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0,00	100	70	5,65	11,31	1,20	1,51	460,72	579,75	383.937
2	-0,04	100	70	0,00	0,00	1,28	2,12	0,00	0,00	0.000
3	-0,07	100	70	5,65	11,31	1,36	2,74	685,81	1383,44	505.828
4	-0,11	100	70	5,65	11,31	1,44	3,35	826,36	1922,08	574.184
5	-0,14	100	70	5,65	11,31	1,53	3,96	944,81	2450,85	618.902
6	-0,18	100	70	5,65	11,31	1,62	4,57	1032,74	2917,98	638.158
7	-0,21	100	70	5,65	11,31	1,71	5,18	1101,18	3329,91	642.219

BOICELLI Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 63 di 117

n°	Y	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
8	-0,24	100	70	5,65	11,31	1,82	5,80	1154,27	3685,20	635.654
9	-0,28	100	70	5,65	11,31	1,92	6,41	1190,41	3969,52	619.270
10	-0,32	100	70	5,65	11,31	2,03	7,02	1215,48	4196,23	597.541
11	-0,35	100	70	5,65	11,31	2,15	7,63	1236,71	4388,21	574.750
12	-0,39	100	70	5,65	11,31	2,28	8,25	1252,63	4540,39	550.518
13	-0,42	100	70	5,65	11,31	2,41	8,86	1259,82	4640,58	523.768
14	-0,45	100	70	5,65	11,31	2,54	9,47	1265,14	4714,75	497.731
15	-0,49	100	70	5,65	11,31	2,69	10,08	1268,76	4765,16	472.500
16	-0,53	100	70	5,65	11,31	2,84	10,70	1270,83	4794,09	448.150
17	-0,56	100	70	5,65	11,31	2,99	11,31	1271,53	4803,77	424.737
18	-0,59	100	70	5,65	11,31	3,16	11,92	1271,00	4796,41	402.299
19	-0,63	100	70	5,65	11,31	3,33	12,53	1269,40	4774,06	380.859
20	-0,66	100	70	5,65	11,31	3,51	13,15	1266,86	4738,70	360.426
21	-0,70	100	70	5,65	11,31	3,71	13,76	1263,52	4692,15	340.999

Fondazione

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	Y	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-1,00	100	50	7,92	5,65	0,00	0,00	0,00	0,00	1000.000
2	-0,93	100	50	7,92	5,65	0,12	0,00	0,00	0,00	1000.000
3	-0,85	100	50	7,92	5,65	0,47	0,00	138,07	0,00	296.689
4	-0,77	100	50	7,92	5,65	1,04	0,00	138,07	0,00	132.964
5	-0,70	100	50	7,92	5,65	1,83	0,00	138,07	0,00	75.422
6	0,00	100	50	5,65	7,92	-14,10	0,00	-138,07	0,00	9.790
7	0,10	100	50	5,65	7,92	-12,46	0,00	-138,07	0,00	11.084
8	0,20	100	50	5,65	7,92	-10,74	0,00	-138,07	0,00	12.851
9	0,30	100	50	5,65	7,92	-9,11	0,00	-138,07	0,00	15.160
10	0,40	100	50	5,65	7,92	-7,56	0,00	-138,07	0,00	18.257
11	0,50	100	50	5,65	7,92	-6,12	0,00	-138,07	0,00	22.555
12	0,60	100	50	5,65	7,92	-4,80	0,00	-138,07	0,00	28.772
13	0,70	100	50	5,65	7,92	-3,61	0,00	-138,07	0,00	38.269
14	0,80	100	50	5,65	7,92	-2,56	0,00	-138,07	0,00	53.878
15	0,90	100	50	5,65	7,92	-1,68	0,00	-138,07	0,00	82.349
16	1,00	100	50	5,65	7,92	-0,96	0,00	-138,07	0,00	143.274
17	1,10	100	50	5,65	7,92	-0,44	0,00	-138,07	0,00	315.630
18	1,20	100	50	5,65	7,92	-0,11	0,00	0,00	0,00	1000.000
19	1,30	100	50	5,65	7,92	0,00	0,00	0,00	0,00	1000.000

Combinazione nº 2 - STR A1-M1-R3 H + V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-1,00	100	50	7,92	5,65	0,00	0,00	0,00	0,00	1000.000
2	-0,93	100	50	7,92	5,65	0,06	0,00	0,00	0,00	1000.000
3	-0,85	100	50	7,92	5,65	0,25	0,00	138,07	0,00	546.317
4	-0,77	100	50	7,92	5,65	0,57	0,00	138,07	0,00	244.177
5	-0,70	100	50	7,92	5,65	1,00	0,00	138,07	0,00	138.128
6	0,00	100	50	5,65	7,92	-3,35	0,00	-138,07	0,00	41.273
7	0,10	100	50	5,65	7,92	-2,99	0,00	-138,07	0,00	46.123
8	0,20	100	50	5,65	7,92	-2,62	0,00	-138,07	0,00	52.759
9	0,30	100	50	5,65	7,92	-2,25	0,00	-138,07	0,00	61.452
10	0,40	100	50	5,65	7,92	-1,89	0,00	-138,07	0,00	73.133
11	0,50	100	50	5,65	7,92	-1,55	0,00	-138,07	0,00	89.339
12	0,60	100	50	5,65	7,92	-1,22	0,00	-138,07	0,00	112.766
13	0,70	100	50	5,65	7,92	-0,93	0,00	-138,07	0,00	148.497
14	0,80	100	50	5,65	7,92	-0,67	0,00	-138,07	0,00	207.101
15	0,90	100	50	5,65	7,92	-0,44	0,00	-138,07	0,00	313.715
16	1,00	100	50	5,65	7,92	-0,26	0,00	-138,07	0,00	541.193
17	1,10	100	50	5,65	7,92	-0,12	0,00	0,00	0,00	1000.000
18	1,20	100	50	5,65	7,92	-0,03	0,00	0,00	0,00	1000.000
19	1,30	100	50	5,65	7,92	0,00	0,00	0,00	0,00	1000.000

Combinazione nº 3 - STR A1-M1-R3 H - V

EMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 64 di 117

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-1,00	100	50	7,92	5,65	0,00	0,00	0,00	0,00	1000.000
2	-0,93	100	50	7,92	5,65	0,11	0,00	0,00	0,00	1000.000
3	-0,85	100	50	7,92	5,65	0,44	0,00	138,07	0,00	312.550
4	-0,77	100	50	7,92	5,65	0,98	0,00	138,07	0,00	140.221
5	-0,70	100	50	7,92	5,65	1,73	0,00	138,07	0,00	79.625
6	0,00	100	50	5,65	7,92	-17,35	0,00	-138,07	0,00	7.958
7	0,10	100	50	5,65	7,92	-15,25	0,00	-138,07	0,00	9.056
8	0,20	100	50	5,65	7,92	-13,11	0,00	-138,07	0,00	10.535
9	0,30	100	50	5,65	7,92	-11,08	0,00	-138,07	0,00	12.465
10	0,40	100	50	5,65	7,92	-9,17	0,00	-138,07	0,00	15.057
11	0,50	100	50	5,65	7,92	-7,40	0,00	-138,07	0,00	18.654
12	0,60	100	50	5,65	7,92	-5,79	0,00	-138,07	0,00	23.859
13	0,70	100	50	5,65	7,92	-4,34	0,00	-138,07	0,00	31.817
14	0,80	100	50	5,65	7,92	-3,07	0,00	-138,07	0,00	44.905
15	0,90	100	50	5,65	7,92	-2,01	0,00	-138,07	0,00	68.796
16	1,00	100	50	5,65	7,92	-1,15	0,00	-138,07	0,00	119.966
17	1,10	100	50	5,65	7,92	-0,52	0,00	-138,07	0,00	264.859
18	1,20	100	50	5,65	7,92	-0,13	0,00	0,00	0,00	1000.000
19	1,30	100	50	5,65	7,92	0,00	0,00	0,00	0,00	1000.000

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	Υ	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-1,00	100	50	7,92	5,65	0,00	0,00	0,00	0,00	1000.000
2	-0,93	100	50	7,92	5,65	0,06	0,00	0,00	0,00	1000.000
3	-0,85	100	50	7,92	5,65	0,23	0,00	138,07	0,00	602.382
4	-0,77	100	50	7,92	5,65	0,51	0,00	138,07	0,00	269.479
5	-0,70	100	50	7,92	5,65	0,90	0,00	138,07	0,00	152.581
6	0,00	100	50	5,65	7,92	-5,52	0,00	-138,07	0,00	25.034
7	0,10	100	50	5,65	7,92	-4,85	0,00	-138,07	0,00	28.475
8	0,20	100	50	5,65	7,92	-4,18	0,00	-138,07	0,00	33.021
9	0,30	100	50	5,65	7,92	-3,54	0,00	-138,07	0,00	38.959
10	0,40	100	50	5,65	7,92	-2,94	0,00	-138,07	0,00	46.928
11	0,50	100	50	5,65	7,92	-2,38	0,00	-138,07	0,00	57.983
12	0,60	100	50	5,65	7,92	-1,87	0,00	-138,07	0,00	73.976
13	0,70	100	50	5,65	7,92	-1,40	0,00	-138,07	0,00	98.407
14	0,80	100	50	5,65	7,92	-1,00	0,00	-138,07	0,00	138.564
15	0,90	100	50	5,65	7,92	-0,65	0,00	-138,07	0,00	211.810
16	1,00	100	50	5,65	7,92	-0,37	0,00	-138,07	0,00	368.558
17	1,10	100	50	5,65	7,92	-0,17	0,00	-138,07	0,00	812.019
18	1,20	100	50	5,65	7,92	-0,04	0,00	0,00	0,00	1000.000
19	1,30	100	50	5,65	7,92	0,00	0,00	0,00	0,00	1000.000

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

ELABORATO COMMESSA LOTTO DOCUMENTO RFV FOGLIO 433 I-1 B_1 512_v2 1 65 di 117

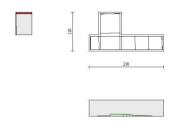


Fig. 10 - Verifiche a flessione (Inviluppo)

Verifiche a taglio

Elementi calcolati a trave

Simbologia adottata

indice sezione

ordinata sezione espressa in [m] larghezza sezione espresso in [cm] altezza sezione espressa in [cm] area ferri a taglio espresso in [cmq] inclinazione dei puntoni di calcestruzzo Afw

inclinazione dei pintoni di calcestruzzo
resistenza di progetto a 'taglio compressione' espressa in [kN]
resistenza di progetto a 'taglio trazione' espressa in [kN]
resistenza di progetto a taglio (min(VRcd, VRsd)) espresso in [kN]
taglio agente espressa in [kN]
fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente) VRsd VRd

Paramento

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	Υ	В	Н	Afw	cotθ	V _{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	0,00	100	70	0,00		0,00	0,00	259,88	10,13	25.654
2	-0,04	100	70	0,00		0,00	0,00	259,97	10,38	25.052
3	-0,07	100	70	0,00		0,00	0,00	260,06	10,64	24.448
4	-0,11	100	70	0,00		0,00	0,00	260,14	10,91	23.843
5	-0,14	100	70	0,00		0,00	0,00	260,23	11,20	23.239
6	-0,18	100	70	0,00		0,00	0,00	260,31	11,50	22.639
7	-0,21	100	70	0,00		0,00	0,00	260,40	11,81	22.044
8	-0,24	100	70	0,00		0,00	0,00	260,49	12,14	21.457
9	-0,28	100	70	0,00		0,00	0,00	260,57	12,48	20.879
10	-0,32	100	70	0,00		0,00	0,00	260,66	12,83	20.310
11	-0,35	100	70	0,00		0,00	0,00	260,75	13,20	19.752
12	-0,39	100	70	0,00		0,00	0,00	260,83	13,58	19.206
13	-0,42	100	70	0,00		0,00	0,00	260,92	13,97	18.673
14	-0,45	100	70	0,00		0,00	0,00	261,01	14,38	18.154
15	-0,49	100	70	0,00		0,00	0,00	261,09	14,79	17.648
16	-0,53	100	70	0,00		0,00	0,00	261,18	15,22	17.156
17	-0,56	100	70	0,00		0,00	0,00	261,27	15,67	16.678
18	-0,59	100	70	0,00		0,00	0,00	261,35	16,12	16.214
19	-0,63	100	70	0,00		0,00	0,00	261,44	16,59	15.763
20	-0,66	100	70	0,00		0,00	0,00	261,53	17,06	15.326

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 66 di 117

	n°	Y	В	Н	Afw	cot0	V _{Rcd}	V_{Rsd}	V_{Rd}	T	FS
ı		[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
	21	-0,70	100	70	0,00		0,00	0,00	261,61	17,56	14.902

Combinazione nº 2 - STR A1-M1-R3 H + V

n°	Y	В	Н	Afw	cotθ	V _{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	0,00	100	70	0,00		0,00	0,00	259,88	2,13	121.996
2	-0,04	100	70	0,00		0,00	0,00	259,97	2,23	116.835
3	-0,07	100	70	0,00		0,00	0,00	260,06	2,33	111.655
4	-0,11	100	70	0,00		0,00	0,00	260,14	2,44	106.515
5	-0,14	100	70	0,00		0,00	0,00	260,23	2,56	101.466
6	-0,18	100	70	0,00		0,00	0,00	260,31	2,70	96.546
7	-0,21	100	70	0,00		0,00	0,00	260,40	2,84	91.790
8	-0,24	100	70	0,00		0,00	0,00	260,49	2,99	87.220
9	-0,28	100	70	0,00		0,00	0,00	260,57	3,15	82.848
10	-0,32	100	70	0,00		0,00	0,00	260,66	3,31	78.682
11	-0,35	100	70	0,00		0,00	0,00	260,75	3,49	74.725
12	-0,39	100	70	0,00		0,00	0,00	260,83	3,68	70.975
13	-0,42	100	70	0,00		0,00	0,00	260,92	3,87	67.431
14	-0,45	100	70	0,00		0,00	0,00	261,01	4,07	64.086
15	-0,49	100	70	0,00		0,00	0,00	261,09	4,28	60.933
16	-0,53	100	70	0,00		0,00	0,00	261,18	4,51	57.962
17	-0,56	100	70	0,00		0,00	0,00	261,27	4,74	55.166
18	-0,59	100	70	0,00		0,00	0,00	261,35	4,97	52.535
19	-0,63	100	70	0,00		0,00	0,00	261,44	5,22	50.060
20	-0,66	100	70	0,00		0,00	0,00	261,53	5,48	47.731
21	-0,70	100	70	0,00		0,00	0,00	261,61	5,74	45.540

Combinazione nº 3 - STR A1-M1-R3 H - V

n°	Y	В	Н	Afw	cot0	V _{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	0,00	100	70	0,00		0,00	0,00	259,88	10,13	25.654
2	-0,04	100	70	0,00		0,00	0,00	259,97	10,38	25.055
3	-0,07	100	70	0,00		0,00	0,00	260,06	10,63	24.458
4	-0,11	100	70	0,00		0,00	0,00	260,14	10,90	23.864
5	-0,14	100	70	0,00		0,00	0,00	260,23	11,18	23.276
6	-0,18	100	70	0,00		0,00	0,00	260,31	11,47	22.694
7	-0,21	100	70	0,00		0,00	0,00	260,40	11,77	22.119
8	-0,24	100	70	0,00		0,00	0,00	260,49	12,09	21.554
9	-0,28	100	70	0,00		0,00	0,00	260,57	12,41	20.998
10	-0,32	100	70	0,00		0,00	0,00	260,66	12,74	20.453
11	-0,35	100	70	0,00		0,00	0,00	260,75	13,09	19.920
12	-0,39	100	70	0,00		0,00	0,00	260,83	13,45	19.398
13	-0,42	100	70	0,00		0,00	0,00	260,92	13,81	18.889
14	-0,45	100	70	0,00		0,00	0,00	261,01	14,19	18.394
15	-0,49	100	70	0,00		0,00	0,00	261,09	14,58	17.912
16	-0,53	100	70	0,00		0,00	0,00	261,18	14,97	17.442
17	-0,56	100	70	0,00		0,00	0,00	261,27	15,38	16.986
18	-0,59	100	70	0,00		0,00	0,00	261,35	15,80	16.543
19	-0,63	100	70	0,00		0,00	0,00	261,44	16,23	16.112
20	-0,66	100	70	0,00		0,00	0,00	261,53	16,66	15.695
21	-0,70	100	70	0,00		0,00	0,00	261,61	17,11	15.289

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	Y	В	Н	Afw	cot0	V _{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	0,00	100	70	0,00		0,00	0,00	259,88	2,13	121.996
2	-0,04	100	70	0,00		0,00	0,00	259,97	2,22	116.859
3	-0,07	100	70	0,00		0,00	0,00	260,06	2,33	111.740
4	-0,11	100	70	0,00		0,00	0,00	260,14	2,44	106.690
5	-0,14	100	70	0,00		0,00	0,00	260,23	2,56	101.749
6	-0,18	100	70	0,00		0,00	0,00	260,31	2,69	96.948
7	-0,21	100	70	0,00		0,00	0,00	260,40	2,82	92.313
8	-0,24	100	70	0,00		0,00	0,00	260,49	2,96	87.863
9	-0,28	100	70	0,00		0,00	0,00	260,57	3,12	83.608
10	-0,32	100	70	0,00		0,00	0,00	260,66	3,28	79.551

BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO ELABORATO DOCUMENTO REV. FOGLIO 433 I-1 B_1 512_v2 1 67 di 117

n°	Y	В	Н	Afw	cotθ	V_{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
11	-0,35	100	70	0,00		0,00	0,00	260,75	3,44	75.693
12	-0,39	100	70	0,00		0,00	0,00	260,83	3,62	72.034
13	-0,42	100	70	0,00		0,00	0,00	260,92	3,81	68.570
14	-0,45	100	70	0,00		0,00	0,00	261,01	4,00	65.296
15	-0,49	100	70	0,00		0,00	0,00	261,09	4,20	62.203
16	-0,53	100	70	0,00		0,00	0,00	261,18	4,41	59.284
17	-0,56	100	70	0,00		0,00	0,00	261,27	4,62	56.531
18	-0,59	100	70	0,00		0,00	0,00	261,35	4,85	53.934
19	-0,63	100	70	0,00		0,00	0,00	261,44	5,08	51.486
20	-0,66	100	70	0,00		0,00	0,00	261,53	5,32	49.178
21	-0,70	100	70	0,00		0,00	0,00	261,61	5,57	47.001

Fondazione

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	Y	В	Н	Afw	cotθ	V _{Rcd}	V _{Rsd}	V _{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	-1,00	100	50	0,00		0,00	0,00	200,38	0,00	100.000
2	-0,93	100	50	0,00		0,00	0,00	200,38	3,12	64.322
3	-0,85	100	50	0,00		0,00	0,00	200,38	6,15	32.564
4	-0,77	100	50	0,00		0,00	0,00	200,38	9,11	21.985
5	-0,70	100	50	0,00		0,00	0,00	200,38	12,00	16.701
6	0,00	100	50	0,00		0,00	0,00	200,38	-17,84	11.235
7	0,10	100	50	0,00		0,00	0,00	200,38	-17,47	11.469
8	0,20	100	50	0,00		0,00	0,00	200,38	-16,77	11.949
9	0,30	100	50	0,00		0,00	0,00	200,38	-15,93	12.579
10	0,40	100	50	0,00		0,00	0,00	200,38	-14,95	13.400
11	0,50	100	50	0,00		0,00	0,00	200,38	-13,84	14.477
12	0,60	100	50	0,00		0,00	0,00	200,38	-12,59	15.915
13	0,70	100	50	0,00		0,00	0,00	200,38	-11,20	17.886
14	0,80	100	50	0,00		0,00	0,00	200,38	-9,68	20.702
15	0,90	100	50	0,00		0,00	0,00	200,38	-8,02	24.993
16	1,00	100	50	0,00		0,00	0,00	200,38	-6,22	32.222
17	1,10	100	50	0,00		0,00	0,00	200,38	-4,28	46.785
18	1,20	100	50	0,00		0,00	0,00	200,38	-2,21	90.668
19	1,30	100	50	0,00		0,00	0,00	200,38	0,00	100.000

Combinazione nº 2 - STR A1-M1-R3 H + V

n°	Υ	В	Н	Afw	cotθ	V _{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	-1,00	100	50	0,00		0,00	0,00	200,38	0,00	100.000
2	-0,93	100	50	0,00		0,00	0,00	200,38	1,69	118.599
3	-0,85	100	50	0,00		0,00	0,00	200,38	3,35	59.801
4	-0,77	100	50	0,00		0,00	0,00	200,38	4,98	40.207
5	-0,70	100	50	0,00		0,00	0,00	200,38	6,59	30.415
6	0,00	100	50	0,00		0,00	0,00	200,38	-3,73	53.761
7	0,10	100	50	0,00		0,00	0,00	200,38	-3,78	53.013
8	0,20	100	50	0,00		0,00	0,00	200,38	-3,74	53.549
9	0,30	100	50	0,00		0,00	0,00	200,38	-3,65	54.843
10	0,40	100	50	0,00		0,00	0,00	200,38	-3,52	57.005
11	0,50	100	50	0,00		0,00	0,00	200,38	-3,33	60.245
12	0,60	100	50	0,00		0,00	0,00	200,38	-3,09	64.917
13	0,70	100	50	0,00		0,00	0,00	200,38	-2,80	71.643
14	0,80	100	50	0,00		0,00	0,00	200,38	-2,46	81.564
15	0,90	100	50	0,00		0,00	0,00	200,38	-2,07	96.982
16	1,00	100	50	0,00		0,00	0,00	200,38	-1,63	123.295
17	1,10	100	50	0,00		0,00	0,00	200,38	-1,13	176.724
18	1,20	100	50	0,00		0,00	0,00	200,38	-0,59	338.408
19	1,30	100	50	0,00		0,00	0,00	200,38	0,00	100.000

Combinazione nº 3 - STR A1-M1-R3 H - V

n°	Y	В	Н	Afw	cotθ	V_{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	

EMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 68 di 117

n°	Y	В	Н	Afw	cot0	V_{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	-1,00	100	50	0,00		0,00	0,00	200,38	0,00	100.000
2	-0,93	100	50	0,00		0,00	0,00	200,38	2,96	67.725
3	-0,85	100	50	0,00		0,00	0,00	200,38	5,83	34.341
4	-0,77	100	50	0,00		0,00	0,00	200,38	8,63	23.223
5	-0,70	100	50	0,00		0,00	0,00	200,38	11,34	17.670
6	0,00	100	50	0,00		0,00	0,00	200,38	-22,56	8.883
7	0,10	100	50	0,00		0,00	0,00	200,38	-21,89	9.155
8	0,20	100	50	0,00		0,00	0,00	200,38	-20,87	9.601
9	0,30	100	50	0,00		0,00	0,00	200,38	-19,71	10.168
10	0,40	100	50	0,00		0,00	0,00	200,38	-18,40	10.892
11	0,50	100	50	0,00		0,00	0,00	200,38	-16,94	11.829
12	0,60	100	50	0,00		0,00	0,00	200,38	-15,34	13.066
13	0,70	100	50	0,00		0,00	0,00	200,38	-13,58	14.750
14	0,80	100	50	0,00		0,00	0,00	200,38	-11,69	17.145
15	0,90	100	50	0,00		0,00	0,00	200,38	-9,64	20.779
16	1,00	100	50	0,00		0,00	0,00	200,38	-7,45	26.887
17	1,10	100	50	0,00		0,00	0,00	200,38	-5,12	39.174
18	1,20	100	50	0,00		0,00	0,00	200,38	-2,63	76.164
19	1,30	100	50	0,00		0,00	0,00	200,38	0,00	100.000

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	Y	В	н	Afw	cotθ	V _{Rcd}	V _{Rsd}	V _{Rd}	T	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	-1,00	100	50	0,00		0,00	0,00	200,38	0,00	100.000
2	-0,93	100	50	0,00		0,00	0,00	200,38	1,53	130.711
3	-0,85	100	50	0,00		0,00	0,00	200,38	3,04	65.998
4	-0,77	100	50	0,00		0,00	0,00	200,38	4,51	44.435
5	-0,70	100	50	0,00		0,00	0,00	200,38	5,95	33.660
6	0,00	100	50	0,00		0,00	0,00	200,38	-6,99	28.660
7	0,10	100	50	0,00		0,00	0,00	200,38	-6,81	29.429
8	0,20	100	50	0,00		0,00	0,00	200,38	-6,53	30.672
9	0,30	100	50	0,00		0,00	0,00	200,38	-6,20	32.297
10	0,40	100	50	0,00		0,00	0,00	200,38	-5,82	34.416
11	0,50	100	50	0,00		0,00	0,00	200,38	-5,39	37.194
12	0,60	100	50	0,00		0,00	0,00	200,38	-4,90	40.897
13	0,70	100	50	0,00		0,00	0,00	200,38	-4,36	45.972
14	0,80	100	50	0,00		0,00	0,00	200,38	-3,76	53.225
15	0,90	100	50	0,00		0,00	0,00	200,38	-3,12	64.268
16	1,00	100	50	0,00		0,00	0,00	200,38	-2,42	82.873
17	1,10	100	50	0,00		0,00	0,00	200,38	-1,66	120.351
18	1,20	100	50	0,00		0,00	0,00	200,38	-0,86	233.274
19	1,30	100	50	0,00		0,00	0,00	200,38	0,00	100.000

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	69 di 117

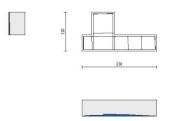


Fig. 11 - Verifiche a taglio (Inviluppo)

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV **FOGLIO** 433 512_v2 70 di 117 I-1 B_1

Risultati per inviluppo

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Tipo combinazione Tipo Sisma Combinazione sismica FS_{SCO} Coeff. di sicurezza allo scorrimento Coeff. di sicurezza al ribaltamento Coeff. di sicurezza a carico limite FS_{OLTM}

Indice della combinazione

FS_{STAB} Coeff. di sicurezza a stabilità globale Coeff. di sicurezza a sifonamento Coeff. di sicurezza a sollevamento

n°	Tipo	Sismica	FSsco	FS _{RIB}	FS _{QLIM}	FS _{STAB}	FS _{HYD}	FSUPL
1	STR A1-M1-R3	H + V	1.198		6.239			
2	STR A1-M1-R3	H + V	1.980		14.453			
3	STR A1-M1-R3	H - V	1.134		6.156			
4	STR A1-M1-R3	H - V	1.878		14.974			
5	GEO A2-M2-R2	H + V				1.877		
6	GEO A2-M2-R2	H + V				2.639		
7	GEO A2-M2-R2	H - V				1.848		
8	GEO A2-M2-R2	H - V				2.578		
9	EQU	H + V		3.735				
10	EQU	H + V		7.244				
11	EQU	H - V		2.903				
12	EQU	H - V		4.818				

Verifica a scorrimento fondazione

Simbologia adottata

Indice combinazione

Rsa Resistenza allo scorrimento per attrito, espresso in [kN] Resistenza passiva terreno antistante, espresso in [kN] Rpt

Rps Rp Rt R Resistenza passiva sperone, espresso in [kN] Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN]

Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN] Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN]

Carico parallelo al piano di posa, espresso in [kN] Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	Т	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
3	33,12	0,00	0,00			33,12	29,21	1.134

Verifica a carico limite

Simbologia adottata

n° N Indice combinazione

Carico verticale totale, espresso in [kN] carico limite del terreno, espresso in [kN]

Portanza di progetto, espresso in [kN]
Fattore di sicurezza (rapporto tra portanza di progetto e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kN]	[kN]	[kN]	
3	81,97	504,60	420,50	6.156

Dettagli calcolo portanza

Simbologia adottata

Indece combinazione Nc, Nq, N γ Fattori di capacità portante

ic, iq, i γ Fattori di inclinazione del carico dc, dq, d γ Fattori di profondità d Fattori di profondità del piano di posa

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV **FOGLIO** 433 512_v2 71 di 117 I-1 B_1

Fattori di inclinazione del profilo topografico gc, gq, gγ bc, bq, bγ Fattori di inclinazione del piano di posa

sc, sq, syFattori di forma della fondazione

Fattori di riduzione per punzonamento secondo Vesic

Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByN, viene moltiplicato per questo

fattore

Affondamento del piano di posa, espresso in [m] Larghezza fondazione ridotta, espresso in [m] Н Altezza del cuneo di rottura, espresso in [m] Peso di volume del terreno medio, espresso in [kN/mc] Angolo di attrito del terreno medio, espresso in [°]

c Coesione del terreno medio, espresso in [kg/cmq]

Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Meyerhof).

n°	Nc Nq Ny	ic iq iy	dc dq dγ	gc gq gy	bc bq by	sc sq sγ	pc pq py	ľγ	D	B' H	γ	ф	С
									[m]	[m]	[kN/mc]	[°]	[kg/cmq]
3	38.638	0.612	1.080					0.985	0,50	2,30	19,50	33.00	0,00
	26.092	0.612	1.040							2,12			
	26.166	0.165	1.040										

Verifica a ribaltamento

Simbologia adottata

Indice combinazione

Momento stabilizzante, espresso in [kNm] Momento ribaltante, espresso in [kNm] Ms

Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)

n°	Ms	Mr	FS
	[kNm]	[kNm]	
11	113,10	38,96	2.903

Verifica stabilità globale muro + terreno

Simbologia adottata

Ic Indice combinazione

Centro superficie di scorrimento, espresso in [m]

Raggio, espresso in [m] FS Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
7	-0,50; 1,17	2,99	1.848

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN] carico sulla striscia espresso in [kN] Ov

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

angolo d'attrito del terreno lungo la base della striscia coesione del terreno lungo la base della striscia espressa in [kg/cmq]

b

larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kg/cmq]

Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kg/cmq]

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kg/cmq]	[kg/cmq]	[kN]
1	0,73	4,08	2,26 - 0,20	61.631	34.000	0,00	0,000	
2	2,04	4,08	0,20	55.309	34.000	0,00	0,000	
3	3,06	4,08	0,20	48.898	34.000	0,00	0,000	
4	3,89	4,08	0,20	43.239	33.000	0,00	0,000	
5	4,77	4,08	0,20	38.071	33.000	0,00	0,000	
6	5,76	4,08	0,20	33.250	33.000	0,00	0,000	
7	6,25	4,08	0,20	28.683	33.000	0,00	0,000	
8	6,66	4,08	0,20	24.309	33.000	0,00	0,000	
9	6,99	4,08	0,20	20.082	33.000	0,00	0,000	
10	7,26	4,08	0,20	15.967	33.000	0,00	0,000	

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	72 di 117

n°	W	Qy	b	α	ф	С	u	Тх; Ту
	[kN]	[kN]	[m]	[°]	[°]	[kg/cmq]	[kg/cmq]	[kN]
11	7,46	4,08	0,20	11.935	33.000	0,00	0,000	
12	8,40	0,06	0,20	7.962	33.000	0,00	0,000	
13	8,54	1,51	0,20	4.028	33.000	0,00	0,000	
14	8,57	0,00	0,20	0.113	33.000	0,00	0,000	
15	6,74	0,00	0,20	-3.801	33.000	0,00	0,000	
16	4,87	0,00	0,20	-7.734	33.000	0,00	0,000	
17	4,16	0,00	0,20	-11.703	33.000	0,00	0,000	
18	3,96	0,00	0,20	-15.731	33.000	0,00	0,000	
19	3,70	0,00	0,20	-19.841	33.000	0,00	0,000	
20	3,37	0,00	0,20	-24.060	33.000	0,00	0,000	
21	2,97	0,00	0,20	-28.425	33.000	0,00	0,000	
22	2,49	0,00	0,20	-32.979	33.000	0,00	0,000	
23	1,91	0,00	0,20	-37.783	33.000	0,00	0,000	
24	1,22	0,00	0,20	-42.928	33.000	0,00	0,000	
25	0,40	0,00	-2,84 - 0,20	-47.001	33.000	0,00	0,000	

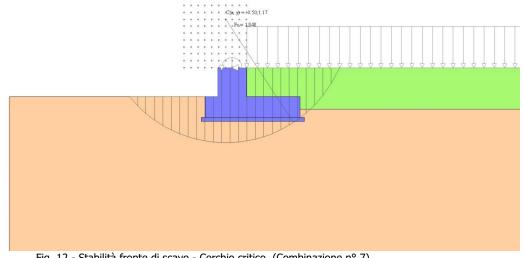


Fig. 12 - Stabilità fronte di scavo - Cerchio critico (Combinazione nº 7)

Sollecitazioni

Simbologia adottata

Mmin, Mmax

Sforzo normale minimo e massimo, espresso in [kN]. Positivo se di compressione.

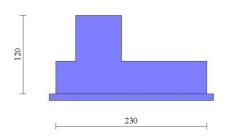
Tmin, TmaxTaglio minimo e massimo, espresso in [kN]. Positivo se diretto da monte verso valle

Mmin, Mmax

Momento minimo e massimo, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Paramento

n°	Х	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	1,51	1,51	2,13	10,13	1,20	6,00
2	-0,04	2,12	2,12	2,22	10,38	1,28	6,36
3	-0,07	2,74	2,74	2,33	10,64	1,36	6,73
4	-0,11	3,35	3,35	2,44	10,91	1,44	7,10
5	-0,14	3,96	3,96	2,56	11,20	1,53	7,49
6	-0,18	4,57	4,57	2,69	11,50	1,62	7,89
7	-0,21	5,18	5,18	2,82	11,81	1,71	8,30
8	-0,24	5,80	5,80	2,96	12,14	1,82	8,71
9	-0,28	6,41	6,41	3,12	12,48	1,92	9,15
10	-0,32	7,02	7,02	3,28	12,83	2,03	9,59


DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	73 di 117

n°	X	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
11	-0,35	7,63	7,63	3,44	13,20	2,15	10,04
12	-0,39	8,25	8,25	3,62	13,58	2,28	10,51
13	-0,42	8,86	8,86	3,81	13,97	2,41	10,99
14	-0,45	9,47	9,47	4,00	14,38	2,54	11,49
15	-0,49	10,08	10,08	4,20	14,79	2,69	12,00
16	-0,53	10,70	10,70	4,41	15,22	2,84	12,53
17	-0,56	11,31	11,31	4,62	15,67	2,99	13,07
18	-0,59	11,92	11,92	4,85	16,12	3,16	13,62
19	-0,63	12,53	12,53	5,08	16,59	3,33	14,20
20	-0,66	13,15	13,15	5,32	17,06	3,51	14,78
21	-0,70	13,76	13,76	5,57	17,56	3,71	15,39

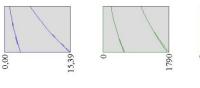


Fig. 13 - Paramento (Inviluppo)

Fondazione

n°	X	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	-1,00	0,00	0,00	0,00	0,00	0,00	0,00
2	-0,93	0,00	0,00	1,53	3,12	0,06	0,12
3	-0,85	0,00	0,00	3,04	6,15	0,23	0,47
4	-0,77	0,00	0,00	4,51	9,11	0,51	1,04
5	-0,70	0,00	0,00	5,95	12,00	0,90	1,83
6	0,00	0,00	0,00	-22,56	-3,73	-17,35	-3,35
7	0,10	0,00	0,00	-21,89	-3,78	-15,25	-2,99
8	0,20	0,00	0,00	-20,87	-3,74	-13,11	-2,62
9	0,30	0,00	0,00	-19,71	-3,65	-11,08	-2,25
10	0,40	0,00	0,00	-18,40	-3,52	-9,17	-1,89
11	0,50	0,00	0,00	-16,94	-3,33	-7,40	-1,55
12	0,60	0,00	0,00	-15,34	-3,09	-5,79	-1,22
13	0,70	0,00	0,00	-13,58	-2,80	-4,34	-0,93
14	0,80	0,00	0,00	-11,69	-2,46	-3,07	-0,67
15	0,90	0,00	0,00	-9,64	-2,07	-2,01	-0,44
16	1,00	0,00	0,00	-7,45	-1,63	-1,15	-0,26
17	1,10	0,00	0,00	-5,12	-1,13	-0,52	-0,12
18	1,20	0,00	0,00	-2,63	-0,59	-0,13	-0,03
19	1,30	0,00	0,00	0,00	0,00	0,00	0,00

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

LOTTO DOCUMENTO COMMESSA ELABORATO RFV FOGLIO 433 I-1 B_1 512_v2 1 74 di 117

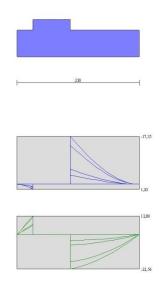


Fig. 14 - Fondazione (Inviluppo)

Verifiche strutturali

Verifiche a flessione

Elementi calcolati a trave

Simbologia adottata

n° Y indice sezione ordinata sezione espressa in [m]

larghezza sezione espresso in [cm] altezza sezione espressa in [cm]

B H Afi Afs M N Mu area ferri inferiori espressa in [cmg] area ferri superiori espressa in [cmq] momento agente espressa in [kNm] sforzo normale agente espressa in [kN] momento ultimi espresso in [kNm]

fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

n°	Y	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0,00	100	70	5,65	11,31	6,00	1,51	306,46	77,13	51.077
2	-0,04	100	70	0,00	0,00	6,36	2,12	0,00	0,00	0.000
3	-0,07	100	70	5,65	11,31	6,73	2,74	323,11	131,38	48.036
4	-0,11	100	70	5,65	11,31	7,10	3,35	330,61	155,80	46.541
5	-0,14	100	70	5,65	11,31	7,49	3,96	337,56	178,46	45.066
6	-0,18	100	70	5,65	11,31	7,89	4,57	344,00	199,42	43.612
7	-0,21	100	70	5,65	11,31	8,30	5,18	349,92	218,71	42.181
8	-0,24	100	70	5,65	11,31	8,71	5,80	355,35	236,40	40.776
9	-0,28	100	70	5,65	11,31	9,15	6,41	360,30	252,53	39.396
10	-0,32	100	70	5,65	11,31	9,59	7,02	364,79	267,17	38.045
11	-0,35	100	70	5,65	11,31	10,04	7,63	368,84	280,38	36.723
12	-0,39	100	70	5,65	11,31	10,51	8,25	372,48	292,22	35.431
13	-0,42	100	70	5,65	11,31	10,99	8,86	375,71	302,76	34.172
14	-0,45	100	70	5,65	11,31	11,49	9,47	378,57	312,08	32.945
15	-0,49	100	70	5,65	11,31	12,00	10,08	381,07	320,22	31.752
16	-0,53	100	70	5,65	11,31	12,53	10,70	383,24	327,28	30.594
17	-0,56	100	70	5,65	11,31	13,07	11,31	385,09	333,30	29.470
18	-0,59	100	70	5,65	11,31	13,62	11,92	386,64	338,37	28.381
19	-0,63	100	70	5,65	11,31	14,20	12,53	387,92	342,54	27.327

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	75 di 117

n°	Υ	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
20	-0,66	100	70	5,65	11,31	14,78	13,15	388,95	345,88	26.308
21	-0,70	100	70	5,65	11,31	15,39	13,76	389,74	348,45	25.323

Fondazione

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-1,00	100	50	7,92	5,65	0,00	0,00	0,00	0,00	1000.000
2	-0,93	100	50	7,92	5,65	0,00	0,00	0,00	0,00	1000.000
3	-0,85	100	50	7,92	5,65	0,47	0,00	138,07	0,00	296.689
4	-0,77	100	50	7,92	5,65	1,04	0,00	138,07	0,00	132.964
5	-0,70	100	50	7,92	5,65	1,83	0,00	138,07	0,00	75.422
6	0,00	100	50	5,65	7,92	-17,35	0,00	-138,07	0,00	7.958
7	0,10	100	50	5,65	7,92	-15,25	0,00	-138,07	0,00	9.056
8	0,20	100	50	5,65	7,92	-13,11	0,00	-138,07	0,00	10.535
9	0,30	100	50	5,65	7,92	-11,08	0,00	-138,07	0,00	12.465
10	0,40	100	50	5,65	7,92	-9,17	0,00	-138,07	0,00	15.057
11	0,50	100	50	5,65	7,92	-7,40	0,00	-138,07	0,00	18.654
12	0,60	100	50	5,65	7,92	-5,79	0,00	-138,07	0,00	23.859
13	0,70	100	50	5,65	7,92	-4,34	0,00	-138,07	0,00	31.817
14	0,80	100	50	5,65	7,92	-3,07	0,00	-138,07	0,00	44.905
15	0,90	100	50	5,65	7,92	-2,01	0,00	-138,07	0,00	68.796
16	1,00	100	50	5,65	7,92	-1,15	0,00	-138,07	0,00	119.966
17	1,10	100	50	5,65	7,92	-0,52	0,00	-138,07	0,00	264.859
18	1,20	100	50	5,65	7,92	0,00	0,00	0,00	0,00	1000.000
19	1,30	100	50	5,65	7,92	0,00	0,00	0,00	0,00	1000.000

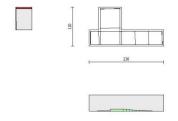


Fig. 15 - Verifiche a flessione (Inviluppo)

Verifiche a taglio

Elementi calcolati a trave

Simbologia adottata

indice sezione
ordinata sezione espressa in [m] larghezza sezione espresso in [cm]

altezza sezione espressa in [cm] area ferri a taglio espresso in [cmq]

inclinazione dei puntoni di calcestruzzo resistenza di progetto a 'taglio compressione' espressa in [kN] resistenza di progetto a 'taglio trazione' espressa in [kN]

BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	76 di 117

resistenza di progetto a taglio (min(VRcd, VRsd)) espresso in [kN] taglio agente espressa in [kN] fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente) T FS

Paramento

n°	Y	В	Н	Afw	cotθ	V _{Rcd}	V_{Rsd}	V _{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	0,00	100	70	0,00		0,00	0,00	259,88	10,13	25.654
2	-0,04	100	70	0,00		0,00	0,00	259,97	10,38	25.052
3	-0,07	100	70	0,00		0,00	0,00	260,06	10,64	24.448
4	-0,11	100	70	0,00		0,00	0,00	260,14	10,91	23.843
5	-0,14	100	70	0,00		0,00	0,00	260,23	11,20	23.239
6	-0,18	100	70	0,00		0,00	0,00	260,31	11,50	22.639
7	-0,21	100	70	0,00		0,00	0,00	260,40	11,81	22.044
8	-0,24	100	70	0,00		0,00	0,00	260,49	12,14	21.457
9	-0,28	100	70	0,00		0,00	0,00	260,57	12,48	20.879
10	-0,32	100	70	0,00		0,00	0,00	260,66	12,83	20.310
11	-0,35	100	70	0,00		0,00	0,00	260,75	13,20	19.752
12	-0,39	100	70	0,00		0,00	0,00	260,83	13,58	19.206
13	-0,42	100	70	0,00		0,00	0,00	260,92	13,97	18.673
14	-0,45	100	70	0,00		0,00	0,00	261,01	14,38	18.154
15	-0,49	100	70	0,00		0,00	0,00	261,09	14,79	17.648
16	-0,53	100	70	0,00		0,00	0,00	261,18	15,22	17.156
17	-0,56	100	70	0,00		0,00	0,00	261,27	15,67	16.678
18	-0,59	100	70	0,00		0,00	0,00	261,35	16,12	16.214
19	-0,63	100	70	0,00		0,00	0,00	261,44	16,59	15.763
20	-0,66	100	70	0,00		0,00	0,00	261,53	17,06	15.326
21	-0,70	100	70	0,00		0,00	0,00	261,61	17,56	14.902

Fondazione

n°	Y	В	Н	Afw	cot0	V _{Rcd}	V_{Rsd}	V _{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	-1,00	100	50	0,00		0,00	0,00	200,38	0,00	100.000
2	-0,93	100	50	0,00		0,00	0,00	200,38	3,12	64.322
3	-0,85	100	50	0,00		0,00	0,00	200,38	6,15	32.564
4	-0,77	100	50	0,00		0,00	0,00	200,38	9,11	21.985
5	-0,70	100	50	0,00		0,00	0,00	200,38	12,00	16.701
6	0,00	100	50	0,00		0,00	0,00	200,38	-22,56	8.883
7	0,10	100	50	0,00		0,00	0,00	200,38	-21,89	9.155
8	0,20	100	50	0,00		0,00	0,00	200,38	-20,87	9.601
9	0,30	100	50	0,00		0,00	0,00	200,38	-19,71	10.168
10	0,40	100	50	0,00		0,00	0,00	200,38	-18,40	10.892
11	0,50	100	50	0,00		0,00	0,00	200,38	-16,94	11.829
12	0,60	100	50	0,00		0,00	0,00	200,38	-15,34	13.066
13	0,70	100	50	0,00		0,00	0,00	200,38	-13,58	14.750
14	0,80	100	50	0,00		0,00	0,00	200,38	-11,69	17.145
15	0,90	100	50	0,00		0,00	0,00	200,38	-9,64	20.779
16	1,00	100	50	0,00		0,00	0,00	200,38	-7,45	26.887
17	1,10	100	50	0,00		0,00	0,00	200,38	-5,12	39.174
18	1,20	100	50	0,00		0,00	0,00	200,38	-2,63	76.164
19	1,30	100	50	0,00		0,00	0,00	200,38	0,00	100.000

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

LOTTO DOCUMENTO FOGLIO COMMESSA ELABORATO RFV 433 I-1 B_1 512_v2 1 77 di 117

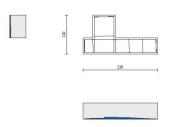


Fig. 16 - Verifiche a taglio (Inviluppo)

Verifiche a fessurazione

Simbologia adottata

indice sezione ordinata sezione espressa in [m] larghezza sezione espresso in [cm] altezza sezione espressa in [cm] area ferri zona tesa espresso in [cmq] Aeff M Mpf area efficace espressa in [cmq] momento agente espressa in [kNm]

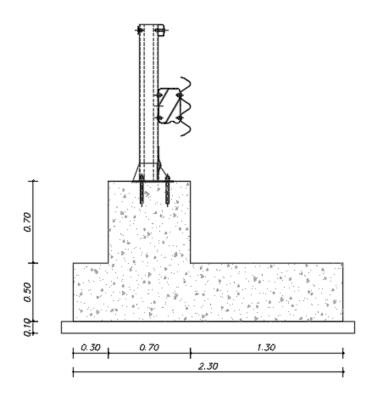
momento di prima fessurazione espressa in [kNm]

deformazione espresso in % spaziatura tra le fessure espressa in [mm] $^\epsilon_{\text{Sm}}$

apertura delle fessure espressa in [mm]

Paramento

n°	Υ	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
2	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
3	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
4	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
5	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
6	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
7	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
8	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
9	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
10	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
11	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
12	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
13	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
14	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
15	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
16	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
17	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
18	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
19	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
20	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)
21	0,00	0	0	0,00	0,00	0,00	0,00	0,000000	0,00	0,000 (1)



DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	78 di 117

SEZIONE ARMATURA SCALA 1.25 1¢10/20 Co 0.60 0.60 Leg. 6#10/mq L=0.80 0.60 1912/20 1=2.00 1012/10 L=2.00 0.30 0.30 Leg 6010/mq L=1.44 1ø10/20 Con 1¢12/20 L=3.00 2.20 0.40 0.40 0.40 1#12/20 L=3.00 2.20

Le verifiche sono tutte soddisfatte sulla base dei materiali adottati.

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 79 di 117

10 MODELLO DI CALCOLO: muro tipo B - H 180 cm

Di seguito viene indicato il modello di calcolo considerato per il muro di tipo B. Tale geometria è la più rappresentativa per il tratto in esame.

Successivamente vengono riportati tabulato di calcolo, input, output, verifiche strutturali e geotecniche per fondazione e paramento agli stati limite ultimo e di esercizio secondo la normativa vigente.

Dati

<u>Materiali</u>

Simbologia adottata

n° Indice materiale

Descr Descrizione del materiale

Calcestruzzo armato

Tipo Classe di resistenza del cls

R_{ck} Resistenza caratteristica a compressione, espressa in [kg/cmq]

E Modulo elastico, espresso in [kg/cmq]

v Coeff. di Poisson

n Coeff. di omogenizzazione acciaio/cls

c Coeff. di omogenizzazione cls teso/compresso

Calcestruzzo armato

n°	Descr	Tipo	Tipo acciaio	γ	R _{ck}	E	ν	n	ntc
				[kN/mc]	[kg/cmq]	[kg/cmq]			
1	Cls Armato	C32/40	B450C	25.0000	407.88	343054	0.30	15.00	0.50

Geometria profilo terreno a monte del muro

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

N numero ordine del punto

X ascissa del punto espressa in [m]
Y ordinata del punto espressa in [m]

inclinazione del tratto espressa in [º]

n°	Х	Y	Α		
	[m]	[m]	[°]		
1	0,00	0,00	0.000		
2	10,00	0,00	0.000		

Terreno a valle del muro

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.000 [°]

Geometria paramento e fondazione

<u>Paramento</u>		
Materiale	Cls Armato	
Altezza paramento	2,30	[m]
Altezza paramento libero	1,80	[m]
Spessore in sommità	0,30	[m]
Spessore all'attacco con la fondazione	0,30	[m]
Inclinazione paramento esterno	0,00	[°]

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

ELABORATO COMMESSA LOTTO DOCUMENTO RFV FOGLIO OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO 433 I-1 B_1 512_v2 1 80 di 117

Inclinazione paramento interno	0,00	[°]
<u>Fondazione</u>		
Materiale	Cls Armato	
Lunghezza mensola di valle	0,50	[m]
Lunghezza mensola di monte	1,70	[m]
Lunghezza totale	2,50	[m]
Inclinazione piano di posa	0,00	[°]
Spessore	0,50	[m]
Spessore magrone	0,10	[m]

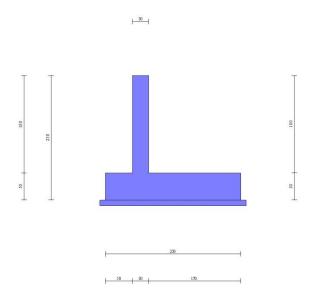


Fig. 1 - Sezione quotata del muro

Descrizione terreni

Parametri di resistenza

Simbologia adottata

Indice del terreno

Descr Descrizione terreno

Peso di volume del terreno espresso in [kN/mc] Peso di volume saturo del terreno espresso in [kN/mc] Angolo d'attrito interno espresso in [°]

Angolo d'attrito terra-muro espresso in [°] Coesione espressa in [kPa]

Coesionie espressa in [kPa]

Adesione terra-muro espressa in [kPa]

Per calcolo portanza con il metodo di Bustamante-Doix

Cesp Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix)

tl Tensione tangenziale limite, espressa in [kPa]

n°	Descr	γ	γsat	ф	δ	С	ca	Cesp	τΙ	
		[kN/mc]	[kN/mc]	[°]	[°]	[kPa]	[kPa]		[kPa]	
1	rilevato	19,0000	19,0000	34.000	0.000	0	0			
2	sabbia ghiaiosa	19,5000	19,5000	33.000	22.000	0	0			
3	Sito Via Romito	19,0000	19,5000	25.000	16.670	10	5			

Stratigrafia

Simbologia adottata

Indice dello strato Spessore dello strato espresso in [m]

Inclinazione espressa in [°]

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV **FOGLIO** 433 512_v2 81 di 117 I-1 B_1

Terreno Terreno dello strato

Costante di Winkler normale e tangenziale alla superficie espressa in Kg/cm²/cm Kwn, Kwt

Per calcolo pali (solo se presenti)

Costante di Winkler orizzontale espressa in Kg/cm²/cm

Coefficiente di spinta

Cesp Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di Bustamante-Doix)

Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato')

Kst_{sta}, Kst_{sis} Coeff. di spinta statico e sismico

n°	Н	α	Terreno	Kwn	Kwt	Kw	Ks	Cesp	Kst _{sta}	Kstsis
	[m]	[°]		[Kg/cm³]	[Kg/cm³]	[Kg/cm³]				
1	0,60	0.000	rilevato	0.000	0.000	0.000	0.000	1.000	0.000	0.000
2	5,00	0.000	Sito Via Romito	2.000	8.000	3.292	0.000	1.000	0.000	0.000

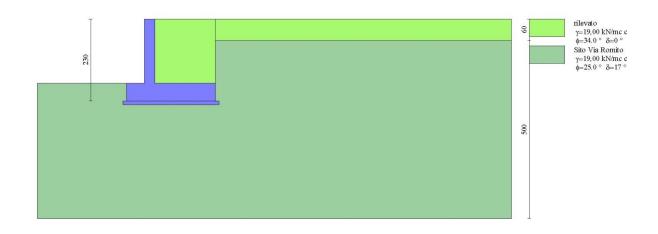


Fig. 2 - Stratigrafia

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso Carichi orizzontali positivi verso sinistra.

- Momento positivo senso antiorario.

 X Ascissa del punto di applicazione del carico concentrato espressa in [m]
- Componente orizzontale del carico concentrato espressa in [kN]
- Componente verticale del carico concentrato espressa in [kN]
- Fy M X_i Q_f Q_f Momento espresso in [kNm]
- Ascissa del punto iniziale del carico ripartito espressa in [m]
 Ascissa del punto finale del carico ripartito espressa in [m]
- Intensità del carico per x=X_i espressa in [kN] Intensità del carico per x=X_f espressa in [kN]

Condizione nº 1 (C01 - Azione da traffico) - VARIABILE

Coeff. di combinazione Ψ_0 =0.75 - Ψ_1 =0.75 - Ψ_2 =0.20

Carichi sul muro

Carren	our mare									
n°	Tipo	Destinazione	Х	Fx	Fy	М	Xi	Xf	Qi	Qf
			[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Concentrato	Paramento	0.00	1.5000	0.0000					

Carichi sul terreno

n°	Tipo	Х	Fx	Fy	М	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Distribuito					1,45	8,45	20,0000	20,0000

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	82 di 117

n°	Tipo	Х	Fx	Fy	М	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
2	Distribuito					0,00	1,45	5,0000	5,0000

Condizione nº 2 (C02 - Peso proprio parapetto) - PERMANENTE

Carichi sul muro

n°	Tipo	Destinazione	Х	Fx	Fy	М	Xi	Xf	Qi	Qf
			[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Concentrato	Paramento	0,00	0,0000	0,3000					

Condizione nº 3 (C03 - Peso proprio cordolo) - PERMANENTE

Carichi sul muro

n°	Tipo	Destinazione	X	Fx	Fy	М	Xi	Xf	Qi	Qf
			[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Concentrato	Paramento	0,00	0,0000	0,0100					

Condizione nº 4 (Condizione 4) - VARIABILE

Coeff. di combinazione $\Psi_0=1.00 - \Psi_1=1.00 - \Psi_2=1.00$

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2018 (D.M. 17.01.2018)

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto			Comb	inazioni sta	itiche		Combi	nazioni sisr	niche
			HYD	UPL	EQU	A1	A2	EQU	A1	A2
Permanenti strutturali	Favolevoli	γG1,fav	0.90	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Permanenti strutturali	Sfavolevoli	γG1,sfav	1.30	1.10	1.30	1.30	1.00	1.00	1.00	1.00
Permanenti non strutturali	Favolevoli	γG2,fav	0.90	0.00	0.00	0.00	0.00	1.00	0.00	0.00
Permanenti non strutturali	Sfavolevoli	γG2,sfav	1.30	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili	Favolevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili	Sfavolevoli	γQ,sfav	1.50	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili da traffico	Favolevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili da traffico	Sfavolevoli	γQT,sfav	1.50	1.50	1.35	1.35	1.15	1.00	1.00	1.00

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazio	ni statiche	Combinazioni sismiche		
		M1	M1 M2		M2	
Tangente dell'angolo di attrito	γtan(φ')	1.00	1.25	1.00	1.00	
Coesione efficace	γc'	1.00	1.25	1.00	1.00	
Resistenza non drenata	γси	1.00	1.40	1.00	1.00	
Peso nell'unita di volume	γγ	1.00	1.00	1.00	1.00	

Coeff. parziali yr per le verifiche agli stati limite ultimi STR e GEO

Verifica	Con	Combinazioni statiche			Combinazioni sismiche			
	R1	R1 R2 R3			R2	R3		
Capacità portante			1.40			1.20		
Scorrimento			1.10			1.00		
Resistenza terreno a valle			1.40			1.20		
Stabilità fronte di scavo		1.10			1.20			

Descrizione combinazioni di carico

Simbologia adottata

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione

Combinazione nº 1 - STR A1-M1-R3 H + V

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 83 di 117

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

Combinazione nº 2 - STR A1-M1-R3 H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Combinazione nº 3 - STR A1-M1-R3 H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

Combinazione nº 4 - STR A1-M1-R3 H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Combinazione nº 5 - GEO A2-M2-R2 H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

Combinazione nº 6 - GEO A2-M2-R2 H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Combinazione nº 7 - GEO A2-M2-R2 H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 84 di 117

Combinazione nº 8 - GEO A2-M2-R2 H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Combinazione nº 9 - EQU H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

Combinazione nº 10 - EQU H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Combinazione nº 11 - EQU H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole
C01 - Azione da traffico	1.00	1.00	Sfavorevole

Combinazione nº 12 - EQU H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
C01 - Azione da traffico	1.00	0.20	Sfavorevole
C02 - Peso proprio parapetto	1.00		Sfavorevole
C03 - Peso proprio cordolo	1.00		Sfavorevole

Dati sismici

Comune Ferrara
Provincia Ferrara
Regione Emilia Romagna
Latitudine 44.837894
Longitudine 11.620440

Indice punti di interpolazione 15402 - 15403 - 15181 - 15180

Vita nominale 50 anni Classe d'uso III

Tipo costruzione Normali affollamenti

Vita di riferimento 75 anni

	Simbolo	U.M.	SLU	SLE
Accelerazione al suolo	aq	[m/s ²]	1.525	0.551

BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	85 di 117

	Simbolo	U.M.		SLU	SLE
Accelerazione al suolo	a _g /g	[%]		0.155	0.056
Massimo fattore amplificazione spettro orizzontale	F0			2.572	2.487
Periodo inizio tratto spettro a velocità costante	Tc*			0.277	0.282
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		С	1.460	1.500
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	
Coeff. di riduzione	βm			0.380	0.470
Coeff. di riduzione verifica a ribaltamento	βm			0.000	0.000
Coeff. di intensità sismica orizzontale	kh	[%]		8.626	3.959
Coeff. di intensità sismica verticale	k _v =0.50 k _h	[%]		4.313	1.979

Forma diagramma incremento sismico Stessa forma del diagramma statico

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

LOTTO COMMESSA FLABORATO DOCUMENTO RFV FOGLIO 433 I-1 512_v2 1 86 di 117 B_1

Opzioni di calcolo

<u>Spinta</u> Metodo di calcolo della spinta Culmann Tipo di spinta Spinta attiva Terreno a bassa permeabilità Non attiva Superficie di spinta limitata Non attiva

Capacità portante

Metodo di calcolo della portanza Meyerhof Criterio di media calcolo del terreno equivalente (terreni stratificati) Ponderata Criterio di riduzione per eccentricità della portanza Meyerhof Criterio di riduzione per rottura locale (punzonamento) Nessuna

Larghezza fondazione nel terzo termine della formula del carico limite $(0.5B\gamma N_{\nu})$ Larghezza effettiva (B) Fattori di forma e inclinazione del carico Solo i fattori di inclinazione

Stabilità globale

Metodo di calcolo della stabilità globale Fellenius

Partecipazione spinta passiva terreno antistante 0.00 Partecipazione resistenza passiva dente di fondazione 50.00

Spostamenti

Non è stato richiesto il calcolo degli spostamenti

Cedimenti

Non è stato richiesto il calcolo dei cedimenti

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO DOCUMENTO ELABORATO RFV FOGLIO 433 I-1 B_1 512_v2 1 87 di 117

Risultati per combinazione

Spinta

Simbologia adottata

Indice della combinazione

Ponto di acplicazione della spinta statica, espressa in [m]
Inclinazione spinta, espressa in [°]

 $\begin{array}{l} Sp \\ P_{Sp} \\ \alpha_{Sp} \\ Sps \\ P_{Sps} \\ Swm \\ P_{Swm} \end{array}$

Punto di applicazione dell'incremento di spinta sismica, espressa in [kN]
Punto di applicazione dell'incremento di spinta sismica, espressa in [m]

Punto di applicazione dell'internento di spinta sistilica, espressa in [m]
Spinta falda, espressa in [kN]
Punto di applicazione della spinta della falda, espressa in [m]
Spinta falda da valle, espressa in [kN]
Punto di applicazione della spinta della falda da valle, espressa in [m]
Sottospinta falda, espressa in [kN] Swv Pswv Ss D

Resistenza diagramma correttivo, espressa in [kN] Punto di applicazione del diagramma correttivo, espressa in [m]

n°	Sp	αsp	P _{Sp}	Sps	P _{Sps}	Swm	P _{Swm}	Swv	P _{Swv}	Ss	D	P _D
	[kN]	[°]	[m]	[kN]	[m]	[kN]	[m]	[kN]	[m]	[kN]	[kN]	[m]
1	14,46	0.00	1,70 -1,30	6,59	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
2	4,35	0.00	1,70 -1,37	2,99	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
3	14,46	0.00	1,70 -1,30	3,72	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
4	4,35	0.00	1,70 -1,37	1,61	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
5	14,46	0.00	1,70 -1,30	6,59	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
6	4,35	0.00	1,70 -1,37	2,99	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
7	14,46	0.00	1,70 -1,30	3,72	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
8	4,35	0.00	1,70 -1,37	1,61	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
9	14,46	0.00	1,70 -1,30	10,20	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
10	4,35	0.00	1,70 -1,37	4,81	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
11	14,46	0.00	1,70 -1,30	5,91	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00
12	4,35	0.00	1,70 -1,37	2,58	1,70 -1,53	0,00	0,00 0,00	0,00	0,00 0,00	0,00	0,00	0,00 0,00

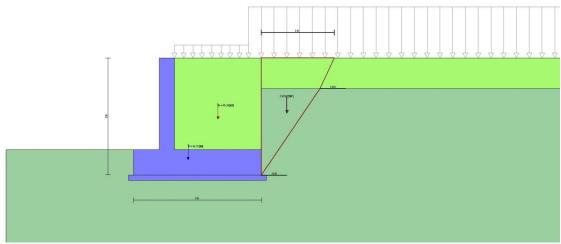


Fig. 3 - Cuneo di spinta statico (Combinazione nº 1)

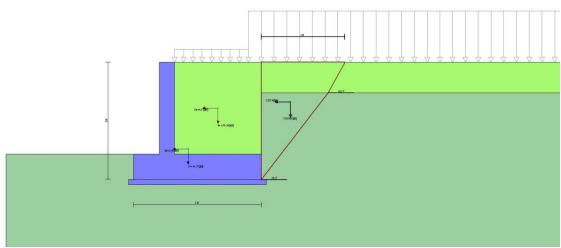


Fig. 4 - Cuneo di spinta sismico (Combinazione nº 1)

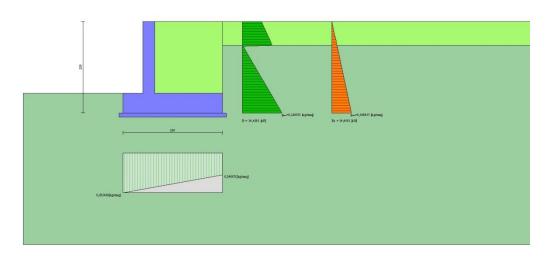


Fig. 5 - Diagramma delle pressioni agenti sull'opera (combinazione statica) (Combinazione nº 1)

BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

ELABORATO COMMESSA LOTTO DOCUMENTO RFV **FOGLIO** 433 I-1 B_1 512_v2 1 89 di 117

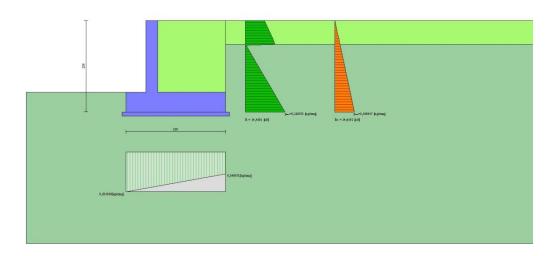


Fig. 6 - Diagramma delle pressioni agenti sull'opera (combinazione sismica) (Combinazione nº 1)

<u>Forze</u>

Simbologia adottata

n° Pm

Indice della combinazione Peso muro, espressa in [kN] Inerzia muro orizzontale e verticale, espressa in [kN]

Baricentro muro, espressa in [m] Peso contrafforti, espressa in [kN] Gm Pc Ic Gc Pt It Gt F

Inerzia contrafforti orizzontale e verticale, espressa in [kN] Baricentro contrafforti, espressa in [m] Peso terrapieno, espressa in [kN]

Inerzia terrapieno orizzontale e verticale, espressa in [kN]

Baricentro terrapieno, espressa in [m]

Forze agenti in direzione orizzontale e verticale, espressa in [kN] Peso terreno sulla fondazione di valle, espressa in [kN] Peso acqua sulla fondazione di valle, espressa in [kN] Ptv

n°	Pm	Im	Gm	Pc	Ic	Gc	Pt	It	Gt	F	Ptv	Pfv
	[kN]	[kN]	[m]	[kN]	[kN]	[m]	[kN]	[kN]	[m]	[kN]	[kN]	[kN]
1	44,75	3,86 1,93	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	70,39	6,07 3,04	0,85 -0,90	1,53 0,31	0,00	0,00
2	44,75	3,86 1,93	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	60,59	5,23 2,61	0,85 -0,90	0,33 0,31	0,00	0,00
3	44,75	3,86 -1,93	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	70,39	6,07 -3,04	0,85 -0,90	1,53 0,31	0,00	0,00
4	44,75	3,86 -1,93	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	60,59	5,23 -2,61	0,85 -0,90	0,33 0,31	0,00	0,00
5	44,75	3,86 1,93	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	70,39	6,07 3,04	0,85 -0,90	1,53 0,31	0,00	0,00
6	44,75	3,86 1,93	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	60,59	5,23 2,61	0,85 -0,90	0,33 0,31	0,00	0,00
7	44,75	3,86 -1,93	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	70,39	6,07 -3,04	0,85 -0,90	1,53 0,31	0,00	0,00
8	44,75	3,86 -1,93	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	60,59	5,23 -2,61	0,85 -0,90	0,33 0,31	0,00	0,00
9	44,75	5,79 2,90	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	70,39	9,11 4,55	0,85 -0,90	1,54 0,31	0,00	0,00
10	44,75	5,79 2,90	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	60,59	7,84 3,92	0,85 -0,90	0,34 0,31	0,00	0,00
11	44,75	5,79 -2,90	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	70,39	9,11 -4,55	0,85 -0,90	1,54 0,31	0,00	0,00
12	44,75	5,79 -2,90	0,27 -1,70	0,00	0,00 0,00	0,00 0,00	60,59	7,84 -3,92	0,85 -0,90	0,34 0,31	0,00	0,00

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV **FOGLIO** 433 512_v2 90 di 117 I-1 B_1

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Indice della combinazione Tipo Tipo combinazione Combinazione sismica Sisma

Coeff. di sicurezza allo scorrimento Coeff. di sicurezza al ribaltamento FS_{SCO} FS_{RIB} Coeff. di sicurezza a carico limite FS_{STAB} Coeff. di sicurezza a stabilità globale Coeff. di sicurezza a sifonamento FS_{HYD} Coeff. di sicurezza a sollevamento

n°	Tipo	Sismica	FS _{sco}	FS _{RIB}	FS _{QLIM}	FS _{STAB}	FS _{HYD}	FSUPL
1	STR A1-M1-R3	H + V	1.486		4.629			
2	STR A1-M1-R3	H + V	2.701		7.449			
3	STR A1-M1-R3	H - V	1.530		5.037			
4	STR A1-M1-R3	H - V	2.766		8.089			
5	GEO A2-M2-R2	H + V				1.801		
6	GEO A2-M2-R2	H + V				2.293		
7	GEO A2-M2-R2	H - V				1.847		
8	GEO A2-M2-R2	H - V				2.352		
9	EQU	H + V		4.002				
10	EQU	H + V		6.769				
11	EQU	H - V		3.220				
12	EQU	H - V		4.754				

Verifica a scorrimento fondazione

Simbologia adottata

Indice combinazione

Resistenza allo scorrimento per attrito, espresso in [kN] Resistenza passiva terreno antistante, espresso in [kN] Resistenza passiva sperone, espresso in [kN]

Rpt Rps

Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN] Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN] Rp Rt

Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN]

Carico parallelo al piano di posa, espresso in [kN] Fattore di sicurezza (rapporto R/T)

n°	Rsa	a Rpt Rps		Rp Rt		R	Т	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
1	48,32	0,00	0,00			48,32	32,51	1.486
2	45,26	0,00	0,00			45,26	16,75	2.701
3	45,34	0,00	0,00			45,34	29,64	1.530
4	42,53	0,00	0,00			42,53	15,38	2.766

Verifica a carico limite

Simbologia adottata

Indice combinazione

Ν Carico verticale totale, espresso in [kN] Qu Qd FS carico limite del terreno, espresso in [kN] Portanza di progetto, espresso in [kN]

Fattore di sicurezza (rapporto tra portanza di progetto e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kN]	[kN]	[kN]	
1	120,42	557,46	464,55	4.629
2	110,19	820,86	684,05	7.449
3	110,48	556,46	463,71	5.037
4	101,11	817,84	681,54	8.089

Dettagli calcolo portanza

Simbologia adottata

Indece combinazione

Nc, Nq, N γ Fattori di capacità portante

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV **FOGLIO** 433 512_v2 91 di 117 I-1 B_1

ic, iq, i γ Fattori di inclinazione del carico

dc, dq, dγ gc, gq, gγ bc, bq, bγ Fattori di profondità del piano di posa Fattori di inclinazione del profilo topografico bc, bq, bγ Fattori di inclinazione del piano di posa sc, sq, sγFattori di forma della fondazione

pc, pq, pγ Fattori di riduzione per punzonamento secondo Vesic

Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByN, viene moltiplicato per questo $\begin{array}{c} r_{\gamma} \\ \text{fattore} \end{array}$

Affondamento del piano di posa, espresso in [m] Larghezza fondazione ridotta, espresso in [m] Altezza del cuneo di rottura, espresso in [m] Peso di volume del terreno medio, espresso in [kN/mc] Angolo di attrito del terreno medio, espresso in [°]

c Coesione del terreno medio, espresso in [kPa]
Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Meyerhof).

n°	Nc Nq Ny	ic iq iγ	dc dq dγ	gc gq gy	bc bq bγ	sc sq sγ	pc pq pγ	ľγ	D	B' H	Υ	ф	С
									[m]	[m]	[kN/mc]	[°]	[kPa]
1	20.721 10.662 6.766	0.692 0.692 0.157	1.063 1.031 1.031	 		 	 	0.976	0,50	2,50 1,96	19,00	25.00	10
2	20.721 10.662 6.766	0.817 0.817 0.428	1.063 1.031 1.031	 	 	 	 	0.976	0,50	2,50 1,96	19,00	25.00	10
3	20.721 10.662 6.766	0.694 0.694 0.160	1.063 1.031 1.031	 	 	 	 	0.976	0,50	2,50 1,96	19,00	25.00	10
4	20.721 10.662 6.766	0.817 0.817 0.428	1.063 1.031 1.031	 	 	 	 	0.976	0,50	2,50 1,96	19,00	25.00	10

Verifica a ribaltamento

Simbologia adottata

Indice combinazione

Ms Momento stabilizzante, espresso in [kNm] Mr Momento ribaltante, espresso in [kNm]

Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)

n°	Ms	Mr	FS
	[kNm]	[kNm]	
9	174,79	43,67	4.002
10	157,58	23,28	6.769
11	164,18	50,99	3.220
12	148,01	31,13	4.754

Verifica stabilità globale muro + terreno

Simbologia adottata

Ic Indice combinazione

Centro superficie di scorrimento, espresso in [m]

Raggio, espresso in [m]

Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
5	-0,34; 0,84	3,75	1.801
6	-0,34; 0,84	3,75	2.293
7	-0,17; 0,84	3,66	1.847
8	-0,34; 0,84	3,75	2.352

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) W

peso della striscia espresso in [kN] carico sulla striscia espresso in [kN] Qу

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [kPa]

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

LOTTO COMMESSA ELABORATO DOCUMENTO REV. FOGLIO 433 I-1 B_1 512_v2 1 92 di 117

- b larghezza della striscia espressa in [m] u pressione neutra lungo la base della striscia espressa in [kPa] Tx; Ty Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kPa]

Combinazione nº 5 - GEO A2-M2-R2 H + V

n°	W	Qy	b	α	ф	С	u	Тх; Ту
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	1,73	5,07	3,33 - 0,25	70.566	34.000	0	0,0	
2	4,59	5,07	0,25	61.413	25.000	10	0,0	
3	6,55	5,07	0,25	54.058	25.000	10	0,0	
4	8,07	5,07	0,25	47.866	25.000	10	0,0	
5	9,30	5,07	0,25	42.354	25.000	10	0,0	
6	10,33	5,07	0,25	37.295	25.000	10	0,0	
7	11,62	5,07	0,25	32.560	25.000	10	0,0	
8	12,66	2,84	0,25	28.064	25.000	10	0,0	
9	13,25	1,27	0,25	23.751	25.000	10	0,0	
10	13,74	1,27	0,25	19.577	25.000	10	0,0	
11	14,13	1,27	0,25	15.509	25.000	10	0,0	
12	14,42	1,27	0,25	11.521	25.000	10	0,0	
13	14,63	1,27	0,25	7.588	25.000	10	0,0	
14	17,13	0,47	0,25	3.691	25.000	10	0,0	
15	8,06	0,00	0,25	-0.188	25.000	10	0,0	
16	6,07	0,00	0,25	-4.069	25.000	10	0,0	
17	5,39	0,00	0,25	-7.968	25.000	10	0,0	
18	4,96	0,00	0,25	-11.905	25.000	10	0,0	
19	4,66	0,00	0,25	-15.901	25.000	10	0,0	
20	4,26	0,00	0,25	-19.978	25.000	10	0,0	
21	3,77	0,00	0,25	-24.163	25.000	10	0,0	
22	3,16	0,00	0,25	-28.492	25.000	10	0,0	
23	2,43	0,00	0,25	-33.008	25.000	10	0,0	
24	1,56	0,00	0,25	-37.771	25.000	10	0,0	
25	0,52	0,00	-3,01 - 0,25	-41.614	25.000	10	0,0	

Combinazione nº 6 - GEO A2-M2-R2 H + V

n°	w	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	1,73	1,01	3,33 - 0,25	70.566	34.000	0	0,0	
2	4,59	1,01	0,25	61.413	25.000	10	0,0	
3	6,55	1,01	0,25	54.058	25.000	10	0,0	
4	8,07	1,01	0,25	47.866	25.000	10	0,0	
5	9,30	1,01	0,25	42.354	25.000	10	0,0	
6	10,33	1,01	0,25	37.295	25.000	10	0,0	
7	11,62	1,01	0,25	32.560	25.000	10	0,0	
8	12,66	0,57	0,25	28.064	25.000	10	0,0	
9	13,25	0,25	0,25	23.751	25.000	10	0,0	
10	13,74	0,25	0,25	19.577	25.000	10	0,0	
11	14,13	0,25	0,25	15.509	25.000	10	0,0	
12	14,42	0,25	0,25	11.521	25.000	10	0,0	
13	14,63	0,25	0,25	7.588	25.000	10	0,0	
14	17,13	0,34	0,25	3.691	25.000	10	0,0	
15	8,06	0,00	0,25	-0.188	25.000	10	0,0	
16	6,07	0,00	0,25	-4.069	25.000	10	0,0	
17	5,39	0,00	0,25	-7.968	25.000	10	0,0	
18	4,96	0,00	0,25	-11.905	25.000	10	0,0	
19	4,66	0,00	0,25	-15.901	25.000	10	0,0	
20	4,26	0,00	0,25	-19.978	25.000	10	0,0	
21	3,77	0,00	0,25	-24.163	25.000	10	0,0	
22	3,16	0,00	0,25	-28.492	25.000	10	0,0	
23	2,43	0,00	0,25	-33.008	25.000	10	0,0	
24	1,56	0,00	0,25	-37.771	25.000	10	0,0	
25	0,52	0,00	-3,01 - 0,25	-41.614	25.000	10	0,0	

Combinazione nº 7 - GEO A2-M2-R2 H - V

n°	w	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	1,61	4,90	3,40 - 0,24	70.495	34.000	0	0,0	
2	4,26	4,90	0,24	61.308	25.000	10	0,0	

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 93 di 117

n°	W	Qy	b	α	ф	С	u	Тх; Ту
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
3	6,09	4,90	0,24	54.048	25.000	10	0,0	
4	7,51	4,90	0,24	47.921	25.000	10	0,0	
5	8,66	4,90	0,24	42.462	25.000	10	0,0	
6	9,62	4,90	0,24	37.449	25.000	10	0,0	
7	10,45	4,90	0,24	32.755	25.000	10	0,0	
8	11,83	4,82	0,24	28.299	25.000	10	0,0	
9	12,39	1,22	0,24	24.023	25.000	10	0,0	
10	12,85	1,22	0,24	19.886	25.000	10	0,0	
11	13,22	1,22	0,24	15.855	25.000	10	0,0	
12	13,50	1,22	0,24	11.904	25.000	10	0,0	
13	13,70	1,22	0,24	8.010	25.000	10	0,0	
14	13,09	1,10	0,24	4.152	25.000	10	0,0	
15	16,51	0,31	0,24	0.314	25.000	10	0,0	
16	5,74	0,00	0,24	-3.523	25.000	10	0,0	
17	5,35	0,00	0,24	-7.376	25.000	10	0,0	
18	4,55	0,00	0,24	-11.263	25.000	10	0,0	
19	4,16	0,00	0,24	-15.204	25.000	10	0,0	
20	3,80	0,00	0,24	-19.220	25.000	10	0,0	
21	3,36	0,00	0,24	-23.338	25.000	10	0,0	
22	2,82	0,00	0,24	-27.588	25.000	10	0,0	
23	2,16	0,00	0,24	-32.011	25.000	10	0,0	
24	1,38	0,00	0,24	-36.661	25.000	10	0,0	
25	0,45	0,00	-2,72 - 0,24	-39.991	25.000	10	0,0	

Combinazione nº 8 - GEO A2-M2-R2 H - V

n°	w	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	1,73	1,01	3,33 - 0,25	70.566	34.000	0	0,0	
2	4,59	1,01	0,25	61.413	25.000	10	0,0	
3	6,55	1,01	0,25	54.058	25.000	10	0,0	
4	8,07	1,01	0,25	47.866	25.000	10	0,0	
5	9,30	1,01	0,25	42.354	25.000	10	0,0	
6	10,33	1,01	0,25	37.295	25.000	10	0,0	
7	11,62	1,01	0,25	32.560	25.000	10	0,0	
8	12,66	0,57	0,25	28.064	25.000	10	0,0	
9	13,25	0,25	0,25	23.751	25.000	10	0,0	
10	13,74	0,25	0,25	19.577	25.000	10	0,0	
11	14,13	0,25	0,25	15.509	25.000	10	0,0	
12	14,42	0,25	0,25	11.521	25.000	10	0,0	
13	14,63	0,25	0,25	7.588	25.000	10	0,0	
14	17,13	0,34	0,25	3.691	25.000	10	0,0	
15	8,06	0,00	0,25	-0.188	25.000	10	0,0	
16	6,07	0,00	0,25	-4.069	25.000	10	0,0	
17	5,39	0,00	0,25	-7.968	25.000	10	0,0	
18	4,96	0,00	0,25	-11.905	25.000	10	0,0	
19	4,66	0,00	0,25	-15.901	25.000	10	0,0	
20	4,26	0,00	0,25	-19.978	25.000	10	0,0	
21	3,77	0,00	0,25	-24.163	25.000	10	0,0	
22	3,16	0,00	0,25	-28.492	25.000	10	0,0	
23	2,43	0,00	0,25	-33.008	25.000	10	0,0	
24	1,56	0,00	0,25	-37.771	25.000	10	0,0	
25	0,52	0,00	-3,01 - 0,25	-41.614	25.000	10	0,0	

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

LOTTO DOCUMENTO COMMESSA ELABORATO RFV FOGLIO 433 I-1 B_1 512_v2 1 94 di 117

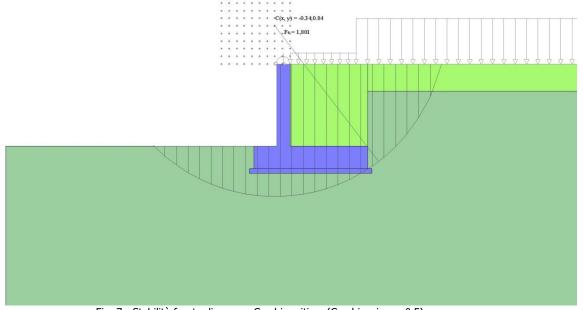


Fig. 7 - Stabilità fronte di scavo - Cerchio critico (Combinazione nº 5)

Sollecitazioni

Simbologia adottata

- Sforzo normale, espresso in [kN]. Positivo se di compressione.

 Taglio, espresso in [kN]. Positivo se diretto da monte verso valle

 Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Paramento

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	X	N	T	M
	[m]	[kN]	[kN]	[kNm]
1	0,00	0,31	1,53	1,65
2	-0,09	0,98	1,74	1,80
3	-0,18	1,66	2,01	1,96
4	-0,27	2,33	2,34	2,16
5	-0,36	3,01	2,72	2,39
6	-0,45	3,68	3,15	2,65
7	-0,54	4,36	3,64	2,96
8	-0,63	5,04	4,19	3,31
9	-0,72	5,71	4,80	3,71
10	-0,81	6,38	5,46	4,17
11	-0,90	7,06	6,17	4,70
12	-0,99	7,73	6,94	5,29
13	-1,08	8,41	7,77	5,95
14	-1,17	9,08	8,65	6,69
15	-1,26	9,76	9,59	7,51
16	-1,35	10,43	10,58	8,41
17	-1,44	11,11	11,63	9,41
18	-1,53	11,78	12,74	10,51
19	-1,62	12,46	13,90	11,71
20	-1,71	13,13	15,11	13,01
21	-1,80	13,81	16,39	14,43

Combinazione nº 2 - STR A1-M1-R3 H + V

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	0.00	0.31	0.33	0.33

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 95 di 117

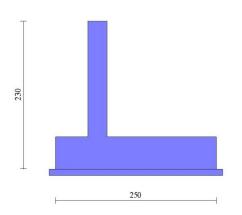
n°	Х	N	T	М
	[m]	[kN]	[kN]	[kNm]
2	-0,09	0,98	0,44	0,36
3	-0,18	1,66	0,60	0,41
4	-0,27	2,33	0,82	0,47
5	-0,36	3,01	1,09	0,56
6	-0,45	3,68	1,42	0,67
7	-0,54	4,36	1,79	0,82
8	-0,63	5,04	2,23	1,00
9	-0,72	5,71	2,71	1,22
10	-0,81	6,38	3,25	1,49
11	-0,90	7,06	3,84	1,80
12	-0,99	7,73	4,49	2,18
13	-1,08	8,41	5,19	2,61
14	-1,17	9,08	5,94	3,11
15	-1,26	9,76	6,75	3,68
16	-1,35	10,43	7,61	4,33
17	-1,44	11,11	8,52	5,06
18	-1,53	11,78	9,49	5,87
19	-1,62	12,46	10,51	6,76
20	-1,71	13,13	11,58	7,76
21	-1,80	13,81	12,71	8,85

Combinazione nº 3 - STR A1-M1-R3 H - V

n°	Х	N	T	М
	[m]	[kN]	[kN]	[kNm]
1	0,00	0,31	1,53	1,65
2	-0,09	0,98	1,74	1,80
3	-0,18	1,66	2,00	1,96
4	-0,27	2,33	2,31	2,16
5	-0,36	3,01	2,68	2,38
6	-0,45	3,68	3,09	2,64
7	-0,54	4,36	3,56	2,94
8	-0,63	5,04	4,08	3,28
9	-0,72	5,71	4,64	3,68
10	-0,81	6,38	5,26	4,12
11	-0,90	7,06	5,93	4,62
12	-0,99	7,73	6,65	5,19
13	-1,08	8,41	7,42	5,82
14	-1,17	9,08	8,24	6,53
15	-1,26	9,76	9,12	7,31
16	-1,35	10,43	10,04	8,17
17	-1,44	11,11	11,02	9,12
18	-1,53	11,78	12,04	10,16
19	-1,62	12,46	13,12	11,29
20	-1,71	13,13	14,25	12,52
21	-1,80	13,81	15,43	13,85

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	Х	N	T	М
	[m]	[kN]	[kN]	[kNm]
1	0,00	0,31	0,33	0,33
2	-0,09	0,98	0,44	0,36
3	-0,18	1,66	0,59	0,41
4	-0,27	2,33	0,80	0,47
5	-0,36	3,01	1,06	0,56
6	-0,45	3,68	1,37	0,66
7	-0,54	4,36	1,72	0,80
8	-0,63	5,04	2,13	0,98
9	-0,72	5,71	2,59	1,19
10	-0,81	6,38	3,09	1,44
11	-0,90	7,06	3,65	1,75
12	-0,99	7,73	4,25	2,10
13	-1,08	8,41	4,90	2,51
14	-1,17	9,08	5,61	2,99
15	-1,26	9,76	6,36	3,52
16	-1,35	10,43	7,16	4,13
17	-1,44	11,11	8,02	4,81


DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	96 di 117

n°	X	X N		М
	[m] [kN]		[kN]	[kNm]
18	-1,53	11,78	8,92	5,58
19	-1,62	12,46	9,87	6,42
20	-1,71	13,13	10,87	7,35
21	-1,80	13,81	11,92	8,38

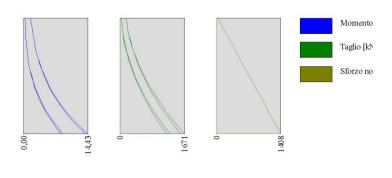


Fig. 8 - Paramento (Inviluppo)

Fondazione

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	Х	N	T	М
	[m]	[kN]	[kN]	[kNm]
1	-0,80	0,00	0,00	0,00
2	-0,70	0,00	4,93	0,25
3	-0,60	0,00	9,74	0,98
4	-0,50	0,00	14,44	2,19
5	-0,40	0,00	19,02	3,86
6	-0,30	0,00	23,49	5,99
7	0,00	0,00	-17,45	-19,47
8	0,10	0,00	-17,55	-17,91
9	0,20	0,00	-17,54	-16,34
10	0,30	0,00	-17,41	-14,78
11	0,40	0,00	-17,17	-13,23
12	0,50	0,00	-16,82	-11,72
13	0,60	0,00	-16,35	-10,25
14	0,70	0,00	-15,77	-8,83
15	0,80	0,00	-15,08	-7,47
16	0,90	0,00	-14,27	-6,19
17	1,00	0,00	-13,35	-5,00
18	1,10	0,00	-12,32	-3,90
19	1,20	0,00	-11,18	-2,91
20	1,30	0,00	-9,92	-2,04
21	1,40	0,00	-8,55	-1,31
22	1,50	0,00	-6,31	-0,64
23	1,60	0,00	-3,21	-0,16
24	1,70	0,00	0,00	0,00

Combinazione nº 2 - STR A1-M1-R3 H + V

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 97 di 117

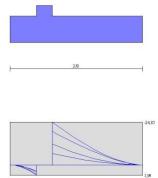
n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-0,80	0,00	0,00	0,00
2	-0,70	0,00	3,26	0,16
3	-0,60	0,00	6,51	0,65
4	-0,50	0,00	9,76	1,47
5	-0,40	0,00	12,99	2,60
6	-0,30	0,00	16,22	4,06
7	0,00	0,00	-7,50	-6,73
8	0,10	0,00	-7,17	-6,03
9	0,20	0,00	-6,83	-5,37
10	0,30	0,00	-6,49	-4,74
11	0,40	0,00	-6,13	-4,15
12	0,50	0,00	-5,77	-3,59
13	0,60	0,00	-5,40	-3,07
14	0,70	0,00	-5,02	-2,58
15	0,80	0,00	-4,63	-2,14
16	0,90	0,00	-4,24	-1,73
17	1,00	0,00	-3,83	-1,37
18	1,10	0,00	-3,42	-1,04
19	1,20	0,00	-2,99	-0,76
20	1,30	0,00	-2,56	-0,52
21	1,40	0,00	-2,12	-0,32
22	1,50	0,00	-1,52	-0,15
23	1,60	0,00	-0,77	-0,04
24	1,70	0,00	0,00	0,00

Combinazione nº 3 - STR A1-M1-R3 H - V

n°	Х	N	T	M
	[m]	[kN]	[kN]	[kNm]
1	-0,80	0,00	0,00	0,00
2	-0,70	0,00	4,48	0,23
3	-0,60	0,00	8,86	0,89
4	-0,50	0,00	13,12	1,99
5	-0,40	0,00	17,28	3,51
6	-0,30	0,00	21,32	5,45
7	0,00	0,00	-23,96	-24,85
8	0,10	0,00	-23,65	-22,66
9	0,20	0,00	-23,23	-20,50
10	0,30	0,00	-22,69	-18,39
11	0,40	0,00	-22,05	-16,34
12	0,50	0,00	-21,30	-14,36
13	0,60	0,00	-20,44	-12,46
14	0,70	0,00	-19,47	-10,65
15	0,80	0,00	-18,39	-8,94
16	0,90	0,00	-17,21	-7,35
17	1,00	0,00	-15,91	-5,88
18	1,10	0,00	-14,50	-4,55
19	1,20	0,00	-12,98	-3,36
20	1,30	0,00	-11,35	-2,33
21	1,40	0,00	-9,62	-1,47
22	1,50	0,00	-7,02	-0,71
23	1,60	0,00	-3,57	-0,18
24	1,70	0,00	0,00	0,00

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
1	-0,80	0,00	0,00	0,00
2	-0,70	0,00	2,93	0,15
3	-0,60	0,00	5,85	0,59
4	-0,50	0,00	8,75	1,32
5	-0,40	0,00	11,65	2,34
6	-0,30	0,00	14,53	3,65
7	0,00	0,00	-13,85	-12,24
8	0,10	0,00	-13,17	-10,92
9	0,20	0,00	-12,48	-9,68
10	0,30	0,00	-11,78	-8,50


DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	98 di 117

n°	Х	N	Т	М
	[m]	[kN]	[kN]	[kNm]
11	0,40	0,00	-11,06	-7,40
12	0,50	0,00	-10,34	-6,36
13	0,60	0,00	-9,60	-5,41
14	0,70	0,00	-8,85	-4,52
15	0,80	0,00	-8,09	-3,71
16	0,90	0,00	-7,32	-2,98
17	1,00	0,00	-6,54	-2,32
18	1,10	0,00	-5,75	-1,74
19	1,20	0,00	-4,94	-1,25
20	1,30	0,00	-4,13	-0,83
21	1,40	0,00	-3,30	-0,50
22	1,50	0,00	-2,31	-0,23
23	1,60	0,00	-1,16	-0,06
24	1,70	0,00	0,00	0,00

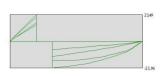


Fig. 9 - Fondazione (Inviluppo)

Verifiche strutturali

Verifiche a flessione

Elementi calcolati a trave

Simbologia adottata

indice sezione
ordinata sezione espressa in [m]
larghezza sezione espresso in [cm]
altezza sezione espressa in [cm]
area ferri inferiori espresso in [cmq] B H Afi

area ferri superiori espressa in [cmq] momento agente espressa in [kNm] sforzo normale agente espressa in [kN] Afs M N Mu Nu FS momento ultimi espresso in [kNm] sforzo normale ultimo espressa in [kN]

fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	v	R	н	Afi	Δfc	м	N	Mu	Nu	FS

BOICELLI Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 99 di 117

	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0,00	100	30	7,70	7,70	1,65	0,31	77,79	14,61	47.143
2	-0,09	100	30	7,70	7,70	1,80	0,98	81,48	44,67	45.354
3	-0,18	100	30	7,70	7,70	1,96	1,66	84,80	71,64	43.157
4	-0,27	100	30	7,70	7,70	2,16	2,33	87,64	94,74	40.573
5	-0,36	100	30	7,70	7,70	2,39	3,01	89,94	113,41	37.678
6	-0,45	100	30	7,70	7,70	2,65	3,68	91,66	127,43	34.580
7	-0,54	100	30	7,70	7,70	2,96	4,36	92,83	136,91	31.402
8	-0,63	100	30	7,70	7,70	3,31	5,04	93,49	142,28	28.258
9	-0,72	100	30	7,70	7,70	3,71	5,71	93,72	144,15	25.244
10	-0,81	100	30	7,70	7,70	4,17	6,38	93,61	143,21	22.429
11	-0,90	100	30	7,70	7,70	4,70	7,06	93,23	140,16	19.853
12	-0,99	100	30	7,70	7,70	5,29	7,73	92,67	135,61	17.532
13	-1,08	100	30	7,70	7,70	5,95	8,41	91,99	130,09	15.468
14	-1,17	100	30	7,70	7,70	6,69	9,08	91,24	123,99	13.648
15	-1,26	100	30	7,70	7,70	7,51	9,76	90,46	117,63	12.052
16	-1,35	100	30	7,70	7,70	8,41	10,43	89,67	111,22	10.659
17	-1,44	100	30	7,70	7,70	9,41	11,11	88,90	104,94	9.445
18	-1,53	100	30	7,70	7,70	10,51	11,78	88,15	98,86	8.389
19	-1,62	100	30	7,70	7,70	11,71	12,46	87,44	93,07	7.469
20	-1,71	100	30	7,70	7,70	13,01	13,13	86,76	87,59	6.669
21	-1,80	100	30	7,70	7,70	14,43	13,81	86,13	82,44	5.970

Combinazione nº 2 - STR A1-M1-R3 H + V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0,00	100	30	7,70	7,70	0,33	0,31	85,92	80,71	260.354
2	-0,09	100	30	7,70	7,70	0,36	0,98	112,03	303,16	307.778
3	-0,18	100	30	7,70	7,70	0,41	1,66	143,33	579,78	349.263
4	-0,27	100	30	7,70	7,70	0,47	2,33	172,93	851,85	364.820
5	-0,36	100	30	7,70	7,70	0,56	3,01	189,12	1017,14	337.920
6	-0,45	100	30	7,70	7,70	0,67	3,68	192,67	1056,34	286.660
7	-0,54	100	30	7,70	7,70	0,82	4,36	187,92	1003,89	230.249
8	-0,63	100	30	7,70	7,70	1,00	5,04	177,60	897,21	178.195
9	-0,72	100	30	7,70	7,70	1,22	5,71	164,69	771,80	135.166
10	-0,81	100	30	7,70	7,70	1,49	6,38	151,26	649,81	101.771
11	-0,90	100	30	7,70	7,70	1,80	7,06	139,44	545,43	77.257
12	-0,99	100	30	7,70	7,70	2,18	7,73	129,89	461,01	59.601
13	-1,08	100	30	7,70	7,70	2,61	8,41	122,21	393,15	46.747
14	-1,17	100	30	7,70	7,70	3,11	9,08	116,02	338,42	37.250
15	-1,26	100	30	7,70	7,70	3,68	9,76	110,98	293,96	30.119
16	-1,35	100	30	7,70	7,70	4,33	10,43	106,86	257,51	24.677
17	-1,44	100	30	7,70	7,70	5,06	11,11	103,45	227,33	20.462
18	-1,53	100	30	7,70	7,70	5,87	11,78	100,59	202,12	17.150
19	-1,62	100	30	7,70	7,70	6,76	12,46	98,19	180,86	14.515
20	-1,71	100	30	7,70	7,70	7,76	13,13	95,98	162,50	12.372
21	-1,80	100	30	7,70	7,70	8,85	13,81	94,04	146,74	10.625

Combinazione nº 3 - STR A1-M1-R3 H - V

n°	Υ	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0,00	100	30	7,70	7,70	1,65	0,31	77,79	14,61	47.143
2	-0,09	100	30	7,70	7,70	1,80	0,98	81,48	44,68	45.356
3	-0,18	100	30	7,70	7,70	1,96	1,66	84,80	71,66	43.171
4	-0,27	100	30	7,70	7,70	2,16	2,33	87,65	94,84	40.615
5	-0,36	100	30	7,70	7,70	2,38	3,01	89,97	113,67	37.764
6	-0,45	100	30	7,70	7,70	2,64	3,68	91,73	127,95	34.722
7	-0,54	100	30	7,70	7,70	2,94	4,36	92,94	137,79	31.604
8	-0,63	100	30	7,70	7,70	3,28	5,04	93,65	143,59	28.519
9	-0,72	100	30	7,70	7,70	3,68	5,71	93,94	145,93	25.556
10	-0,81	100	30	7,70	7,70	4,12	6,38	93,88	145,46	22.781
11	-0,90	100	30	7,70	7,70	4,62	7,06	93,56	142,84	20.232
12	-0,99	100	30	7,70	7,70	5,19	7,73	93,05	138,67	17.928
13	-1,08	100	30	7,70	7,70	5,82	8,41	92,41	133,46	15.869
14	-1,17	100	30	7,70	7,70	6,53	9,08	91,69	127,60	14.046
15	-1,26	100	30	7,70	7,70	7,31	9,76	90,92	121,42	12.441
16	-1,35	100	30	7,70	7,70	8,17	10,43	90,15	115,14	11.034
17	-1,44	100	30	7,70	7,70	9.12	11.11	89,39	108.92	9.803

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 100 di 117

n°	Υ	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
18	-1,53	100	30	7,70	7,70	10,16	11,78	88,64	102,87	8.729
19	-1,62	100	30	7,70	7,70	11,29	12,46	87,93	97,06	7.790
20	-1,71	100	30	7,70	7,70	12,52	13,13	87,25	91,55	6.970
21	-1,80	100	30	7,70	7,70	13,85	13,81	86,61	86,34	6.252

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	Υ	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0,00	100	30	7,70	7,70	0,33	0,31	85,92	80,71	260.354
2	-0,09	100	30	7,70	7,70	0,36	0,98	112,03	303,23	307.850
3	-0,18	100	30	7,70	7,70	0,41	1,66	143,47	581,00	350.003
4	-0,27	100	30	7,70	7,70	0,47	2,33	173,53	857,68	367.316
5	-0,36	100	30	7,70	7,70	0,56	3,01	190,34	1030,63	342.402
6	-0,45	100	30	7,70	7,70	0,66	3,68	194,79	1079,76	293.016
7	-0,54	100	30	7,70	7,70	0,80	4,36	190,74	1035,05	237.396
8	-0,63	100	30	7,70	7,70	0,98	5,04	181,67	936,71	186.041
9	-0,72	100	30	7,70	7,70	1,19	5,71	168,67	810,50	141.943
10	-0,81	100	30	7,70	7,70	1,44	6,38	155,63	688,45	107.823
11	-0,90	100	30	7,70	7,70	1,75	7,06	143,28	579,29	82.053
12	-0,99	100	30	7,70	7,70	2,10	7,73	133,22	490,45	63.406
13	-1,08	100	30	7,70	7,70	2,51	8,41	125,11	418,74	49.790
14	-1,17	100	30	7,70	7,70	2,99	9,08	118,54	360,75	39.709
15	-1,26	100	30	7,70	7,70	3,52	9,76	113,20	313,56	32.127
16	-1,35	100	30	7,70	7,70	4,13	10,43	108,82	274,82	26.337
17	-1,44	100	30	7,70	7,70	4,81	11,11	105,19	242,72	21.847
18	-1,53	100	30	7,70	7,70	5,58	11,78	102,15	215,88	18.318
19	-1,62	100	30	7,70	7,70	6,42	12,46	99,59	193,23	15.508
20	-1,71	100	30	7,70	7,70	7,35	13,13	97,38	173,92	13.241
21	-1,80	100	30	7,70	7,70	8,38	13,81	95,31	157,07	11.374

Fondazione

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-0,80	100	50	7,70	7,70	0,00	0,00	0,00	0,00	1000.000
2	-0,70	100	50	7,70	7,70	0,25	0,00	134,32	0,00	543.396
3	-0,60	100	50	7,70	7,70	0,98	0,00	134,32	0,00	136.894
4	-0,50	100	50	7,70	7,70	2,19	0,00	134,32	0,00	61.313
5	-0,40	100	50	7,70	7,70	3,86	0,00	134,32	0,00	34.758
6	-0,30	100	50	7,70	7,70	5,99	0,00	134,32	0,00	22.420
7	0,00	100	50	7,70	7,70	-19,47	0,00	-134,32	0,00	6.899
8	0,10	100	50	7,70	7,70	-17,91	0,00	-134,32	0,00	7.501
9	0,20	100	50	7,70	7,70	-16,34	0,00	-134,32	0,00	8.221
10	0,30	100	50	7,70	7,70	-14,78	0,00	-134,32	0,00	9.090
11	0,40	100	50	7,70	7,70	-13,23	0,00	-134,32	0,00	10.149
12	0,50	100	50	7,70	7,70	-11,72	0,00	-134,32	0,00	11.459
13	0,60	100	50	7,70	7,70	-10,25	0,00	-134,32	0,00	13.105
14	0,70	100	50	7,70	7,70	-8,83	0,00	-134,32	0,00	15.212
15	0,80	100	50	7,70	7,70	-7,47	0,00	-134,32	0,00	17.973
16	0,90	100	50	7,70	7,70	-6,19	0,00	-134,32	0,00	21.691
17	1,00	100	50	7,70	7,70	-5,00	0,00	-134,32	0,00	26.877
18	1,10	100	50	7,70	7,70	-3,90	0,00	-134,32	0,00	34.438
19	1,20	100	50	7,70	7,70	-2,91	0,00	-134,32	0,00	46.127
20	1,30	100	50	7,70	7,70	-2,04	0,00	-134,32	0,00	65.719
21	1,40	100	50	7,70	7,70	-1,31	0,00	-134,32	0,00	102.749
22	1,50	100	50	7,70	7,70	-0,64	0,00	-134,32	0,00	210.351
23	1,60	100	50	7,70	7,70	-0,16	0,00	-134,32	0,00	831.578
24	1,70	100	50	7,70	7,70	0,00	0,00	0,00	0,00	1000.000

Combinazione nº 2 - STR A1-M1-R3 H + V

n'	0	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
		[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 101 di 117

n°	Υ	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-0,80	100	50	7,70	7,70	0,00	0,00	0,00	0,00	1000.000
2	-0,70	100	50	7,70	7,70	0,16	0,00	134,32	0,00	823.311
3	-0,60	100	50	7,70	7,70	0,65	0,00	134,32	0,00	206.010
4	-0,50	100	50	7,70	7,70	1,47	0,00	134,32	0,00	91.641
5	-0,40	100	50	7,70	7,70	2,60	0,00	134,32	0,00	51.594
6	-0,30	100	50	7,70	7,70	4,06	0,00	134,32	0,00	33.049
7	0,00	100	50	7,70	7,70	-6,73	0,00	-134,32	0,00	19.969
8	0,10	100	50	7,70	7,70	-6,03	0,00	-134,32	0,00	22.273
9	0,20	100	50	7,70	7,70	-5,37	0,00	-134,32	0,00	25.023
10	0,30	100	50	7,70	7,70	-4,74	0,00	-134,32	0,00	28.342
11	0,40	100	50	7,70	7,70	-4,15	0,00	-134,32	0,00	32.400
12	0,50	100	50	7,70	7,70	-3,59	0,00	-134,32	0,00	37.439
13	0,60	100	50	7,70	7,70	-3,07	0,00	-134,32	0,00	43.802
14	0,70	100	50	7,70	7,70	-2,58	0,00	-134,32	0,00	52.005
15	0,80	100	50	7,70	7,70	-2,14	0,00	-134,32	0,00	62.839
16	0,90	100	50	7,70	7,70	-1,73	0,00	-134,32	0,00	77.576
17	1,00	100	50	7,70	7,70	-1,37	0,00	-134,32	0,00	98.365
18	1,10	100	50	7,70	7,70	-1,04	0,00	-134,32	0,00	129.082
19	1,20	100	50	7,70	7,70	-0,76	0,00	-134,32	0,00	177.325
20	1,30	100	50	7,70	7,70	-0,52	0,00	-134,32	0,00	259.759
21	1,40	100	50	7,70	7,70	-0,32	0,00	-134,32	0,00	419.373
22	1,50	100	50	7,70	7,70	-0,15	0,00	-134,32	0,00	878.329
23	1,60	100	50	7,70	7,70	-0,04	0,00	0,00	0,00	1000.000
24	1,70	100	50	7,70	7,70	0,00	0,00	0,00	0,00	1000.000

Combinazione nº 3 - STR A1-M1-R3 H - V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-0,80	100	50	7,70	7,70	0,00	0,00	0,00	0,00	1000.000
2	-0,70	100	50	7,70	7,70	0,23	0,00	134,32	0,00	596.689
3	-0,60	100	50	7,70	7,70	0,89	0,00	134,32	0,00	150.392
4	-0,50	100	50	7,70	7,70	1,99	0,00	134,32	0,00	67.392
5	-0,40	100	50	7,70	7,70	3,51	0,00	134,32	0,00	38.223
6	-0,30	100	50	7,70	7,70	5,45	0,00	134,32	0,00	24.668
7	0,00	100	50	7,70	7,70	-24,85	0,00	-134,32	0,00	5.405
8	0,10	100	50	7,70	7,70	-22,66	0,00	-134,32	0,00	5.928
9	0,20	100	50	7,70	7,70	-20,50	0,00	-134,32	0,00	6.552
10	0,30	100	50	7,70	7,70	-18,39	0,00	-134,32	0,00	7.303
11	0,40	100	50	7,70	7,70	-16,34	0,00	-134,32	0,00	8.220
12	0,50	100	50	7,70	7,70	-14,36	0,00	-134,32	0,00	9.354
13	0,60	100	50	7,70	7,70	-12,46	0,00	-134,32	0,00	10.781
14	0,70	100	50	7,70	7,70	-10,65	0,00	-134,32	0,00	12.613
15	0,80	100	50	7,70	7,70	-8,94	0,00	-134,32	0,00	15.020
16	0,90	100	50	7,70	7,70	-7,35	0,00	-134,32	0,00	18.277
17	1,00	100	50	7,70	7,70	-5,88	0,00	-134,32	0,00	22.842
18	1,10	100	50	7,70	7,70	-4,55	0,00	-134,32	0,00	29.542
19	1,20	100	50	7,70	7,70	-3,36	0,00	-134,32	0,00	39.984
20	1,30	100	50	7,70	7,70	-2,33	0,00	-134,32	0,00	57.669
21	1,40	100	50	7,70	7,70	-1,47	0,00	-134,32	0,00	91.548
22	1,50	100	50	7,70	7,70	-0,71	0,00	-134,32	0,00	189.344
23	1,60	100	50	7,70	7,70	-0,18	0,00	-134,32	0,00	749.659
24	1,70	100	50	7,70	7,70	0,00	0,00	0,00	0,00	1000.000

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-0,80	100	50	7,70	7,70	0,00	0,00	0,00	0,00	1000.000
2	-0,70	100	50	7,70	7,70	0,15	0,00	134,32	0,00	916.488
3	-0,60	100	50	7,70	7,70	0,59	0,00	134,32	0,00	229.416
4	-0,50	100	50	7,70	7,70	1,32	0,00	134,32	0,00	102.094
5	-0,40	100	50	7,70	7,70	2,34	0,00	134,32	0,00	57.501
6	-0,30	100	50	7,70	7,70	3,65	0,00	134,32	0,00	36.848
7	0,00	100	50	7,70	7,70	-12,24	0,00	-134,32	0,00	10.977
8	0,10	100	50	7,70	7,70	-10,92	0,00	-134,32	0,00	12.298
9	0,20	100	50	7,70	7,70	-9,68	0,00	-134,32	0,00	13.880
10	0,30	100	50	7,70	7,70	-8,50	0,00	-134,32	0,00	15.800

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	102 di 117

n°	Y	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
11	0,40	100	50	7,70	7,70	-7,40	0,00	-134,32	0,00	18.159
12	0,50	100	50	7,70	7,70	-6,36	0,00	-134,32	0,00	21.105
13	0,60	100	50	7,70	7,70	-5,41	0,00	-134,32	0,00	24.852
14	0,70	100	50	7,70	7,70	-4,52	0,00	-134,32	0,00	29.719
15	0,80	100	50	7,70	7,70	-3,71	0,00	-134,32	0,00	36.206
16	0,90	100	50	7,70	7,70	-2,98	0,00	-134,32	0,00	45.125
17	1,00	100	50	7,70	7,70	-2,32	0,00	-134,32	0,00	57.872
18	1,10	100	50	7,70	7,70	-1,74	0,00	-134,32	0,00	77.013
19	1,20	100	50	7,70	7,70	-1,25	0,00	-134,32	0,00	107.703
20	1,30	100	50	7,70	7,70	-0,83	0,00	-134,32	0,00	161.604
21	1,40	100	50	7,70	7,70	-0,50	0,00	-134,32	0,00	270.074
22	1,50	100	50	7,70	7,70	-0,23	0,00	-134,32	0,00	579.484
23	1,60	100	50	7,70	7,70	-0,06	0,00	0,00	0,00	1000.000
24	1,70	100	50	7,70	7,70	0,00	0,00	0,00	0,00	1000.000

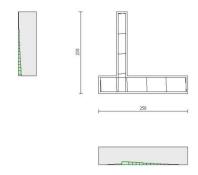


Fig. 10 - Verifiche a flessione (Inviluppo)

Verifiche a taglio

Elementi calcolati a trave

Simbologia adottata

n° Y

indice sezione
ordinata sezione espressa in [m]
larghezza sezione espresso in [cm]
altezza sezione espressa in [cm]

Afw area ferri a taglio espresso in [cmq]

resistenza di progetto a 'taglio compressione' espressa in [kN] resistenza di progetto a 'taglio compressione' espressa in [kN] resistenza di progetto a 'taglio trazione' espressa in [kN] resistenza di progetto a taglio (min(VRcd, VRsd)) espresso in [kN] taglio agente espressa in [kN] VRcd VRsd VRd

T FS

fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente)

Paramento

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	Y	В	Н	Afw	cotθ	V _{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	0,00	100	30	0,00		0,00	0,00	159,23	1,53	104.297
2	-0,09	100	30	0,00		0,00	0,00	159,32	1,74	91.544

BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO ELABORATO DOCUMENTO REV. FOGLIO 433 I-1 B_1 512_v2 1 103 di 117

n°	Y	В	Н	Afw	cot0	V_{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
3	-0,18	100	30	0,00		0,00	0,00	159,41	2,01	79.291
4	-0,27	100	30	0,00		0,00	0,00	159,50	2,34	68.283
5	-0,36	100	30	0,00		0,00	0,00	159,59	2,72	58.749
6	-0,45	100	30	0,00		0,00	0,00	159,67	3,15	50.647
7	-0,54	100	30	0,00		0,00	0,00	159,76	3,64	43.834
8	-0,63	100	30	0,00		0,00	0,00	159,85	4,19	38.128
9	-0,72	100	30	0,00		0,00	0,00	159,94	4,80	33.349
10	-0,81	100	30	0,00		0,00	0,00	160,02	5,46	29.335
11	-0,90	100	30	0,00		0,00	0,00	160,11	6,17	25.950
12	-0,99	100	30	0,00		0,00	0,00	160,20	6,94	23.081
13	-1,08	100	30	0,00		0,00	0,00	160,29	7,77	20.637
14	-1,17	100	30	0,00		0,00	0,00	160,38	8,65	18.542
15	-1,26	100	30	0,00		0,00	0,00	160,46	9,59	16.737
16	-1,35	100	30	0,00		0,00	0,00	160,55	10,58	15.174
17	-1,44	100	30	0,00		0,00	0,00	160,64	11,63	13.812
18	-1,53	100	30	0,00		0,00	0,00	160,73	12,74	12.621
19	-1,62	100	30	0,00		0,00	0,00	160,81	13,90	11.573
20	-1,71	100	30	0,00		0,00	0,00	160,90	15,11	10.647
21	-1,80	100	30	0,00		0,00	0,00	160,99	16,39	9.825

Combinazione nº 2 - STR A1-M1-R3 H + V

n°	Y	В	Н	Afw	cotθ	V _{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	0,00	100	30	0,00		0,00	0,00	159,23	0,33	487.342
2	-0,09	100	30	0,00		0,00	0,00	159,32	0,44	364.159
3	-0,18	100	30	0,00		0,00	0,00	159,41	0,60	264.595
4	-0,27	100	30	0,00		0,00	0,00	159,50	0,82	194.378
5	-0,36	100	30	0,00		0,00	0,00	159,59	1,09	146.194
6	-0,45	100	30	0,00		0,00	0,00	159,67	1,42	112.753
7	-0,54	100	30	0,00		0,00	0,00	159,76	1,79	89.044
8	-0,63	100	30	0,00		0,00	0,00	159,85	2,23	71.818
9	-0,72	100	30	0,00		0,00	0,00	159,94	2,71	58.998
10	-0,81	100	30	0,00		0,00	0,00	160,02	3,25	49.246
11	-0,90	100	30	0,00		0,00	0,00	160,11	3,84	41.678
12	-0,99	100	30	0,00		0,00	0,00	160,20	4,49	35.701
13	-1,08	100	30	0,00		0,00	0,00	160,29	5,19	30.905
14	-1,17	100	30	0,00		0,00	0,00	160,38	5,94	27.003
15	-1,26	100	30	0,00		0,00	0,00	160,46	6,75	23.788
16	-1,35	100	30	0,00		0,00	0,00	160,55	7,61	21.111
17	-1,44	100	30	0,00		0,00	0,00	160,64	8,52	18.858
18	-1,53	100	30	0,00		0,00	0,00	160,73	9,49	16.945
19	-1,62	100	30	0,00		0,00	0,00	160,81	10,51	15.307
20	-1,71	100	30	0,00		0,00	0,00	160,90	11,58	13.895
21	-1,80	100	30	0,00		0,00	0,00	160,99	12,71	12.669

Combinazione nº 3 - STR A1-M1-R3 H - V

n°	Y	В	Н	Afw	cotθ	V _{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	0,00	100	30	0,00		0,00	0,00	159,23	1,53	104.297
2	-0,09	100	30	0,00		0,00	0,00	159,32	1,74	91.670
3	-0,18	100	30	0,00		0,00	0,00	159,41	2,00	79.670
4	-0,27	100	30	0,00		0,00	0,00	159,50	2,31	68.918
5	-0,36	100	30	0,00		0,00	0,00	159,59	2,68	59.589
6	-0,45	100	30	0,00		0,00	0,00	159,67	3,09	51.627
7	-0,54	100	30	0,00		0,00	0,00	159,76	3,56	44.895
8	-0,63	100	30	0,00		0,00	0,00	159,85	4,08	39.225
9	-0,72	100	30	0,00		0,00	0,00	159,94	4,64	34.449
10	-0,81	100	30	0,00		0,00	0,00	160,02	5,26	30.416
11	-0,90	100	30	0,00		0,00	0,00	160,11	5,93	26.997
12	-0,99	100	30	0,00		0,00	0,00	160,20	6,65	24.086
13	-1,08	100	30	0,00		0,00	0,00	160,29	7,42	21.595
14	-1,17	100	30	0,00		0,00	0,00	160,38	8,24	19.452
15	-1,26	100	30	0,00		0,00	0,00	160,46	9,12	17.598
16	-1,35	100	30	0,00		0,00	0,00	160,55	10,04	15.987
17	-1,44	100	30	0,00		0,00	0,00	160,64	11,02	14.580
18	-1,53	100	30	0,00		0,00	0,00	160,73	12,04	13.345

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 104 di 117

n°	Y	В	Н	Afw	cotθ	V _{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
19	-1,62	100	30	0,00		0,00	0,00	160,81	13,12	12.256
20	-1,71	100	30	0,00		0,00	0,00	160,90	14,25	11.292
21	-1,80	100	30	0,00		0,00	0,00	160,99	15,43	10.435

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	Y	В	Н	Afw	cot0	V _{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	0,00	100	30	0,00		0,00	0,00	159,23	0,33	487.342
2	-0,09	100	30	0,00		0,00	0,00	159,32	0,44	365.797
3	-0,18	100	30	0,00		0,00	0,00	159,41	0,59	268.084
4	-0,27	100	30	0,00		0,00	0,00	159,50	0,80	198.649
5	-0,36	100	30	0,00		0,00	0,00	159,59	1,06	150.518
6	-0,45	100	30	0,00		0,00	0,00	159,67	1,37	116.795
7	-0,54	100	30	0,00		0,00	0,00	159,76	1,72	92.689
8	-0,63	100	30	0,00		0,00	0,00	159,85	2,13	75.056
9	-0,72	100	30	0,00		0,00	0,00	159,94	2,59	61.861
10	-0,81	100	30	0,00		0,00	0,00	160,02	3,09	51.776
11	-0,90	100	30	0,00		0,00	0,00	160,11	3,65	43.919
12	-0,99	100	30	0,00		0,00	0,00	160,20	4,25	37.693
13	-1,08	100	30	0,00		0,00	0,00	160,29	4,90	32.683
14	-1,17	100	30	0,00		0,00	0,00	160,38	5,61	28.598
15	-1,26	100	30	0,00		0,00	0,00	160,46	6,36	25.225
16	-1,35	100	30	0,00		0,00	0,00	160,55	7,16	22.410
17	-1,44	100	30	0,00		0,00	0,00	160,64	8,02	20.038
18	-1,53	100	30	0,00		0,00	0,00	160,73	8,92	18.021
19	-1,62	100	30	0,00		0,00	0,00	160,81	9,87	16.292
20	-1,71	100	30	0,00		0,00	0,00	160,90	10,87	14.800
21	-1,80	100	30	0,00		0,00	0,00	160,99	11,92	13.502

Fondazione

Combinazione nº 1 - STR A1-M1-R3 H + V

n°	Υ	В	Н	Afw	cotθ	V _{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	-0,80	100	50	0,00		0,00	0,00	205,87	0,00	100.000
2	-0,70	100	50	0,00		0,00	0,00	205,87	4,93	41.800
3	-0,60	100	50	0,00		0,00	0,00	205,87	9,74	21.143
4	-0,50	100	50	0,00		0,00	0,00	205,87	14,44	14.261
5	-0,40	100	50	0,00		0,00	0,00	205,87	19,02	10.823
6	-0,30	100	50	0,00		0,00	0,00	205,87	23,49	8.763
7	0,00	100	50	0,00		0,00	0,00	205,87	-17,45	11.795
8	0,10	100	50	0,00		0,00	0,00	205,87	-17,55	11.728
9	0,20	100	50	0,00		0,00	0,00	205,87	-17,54	11.737
10	0,30	100	50	0,00		0,00	0,00	205,87	-17,41	11.823
11	0,40	100	50	0,00		0,00	0,00	205,87	-17,17	11.988
12	0,50	100	50	0,00		0,00	0,00	205,87	-16,82	12.240
13	0,60	100	50	0,00		0,00	0,00	205,87	-16,35	12.589
14	0,70	100	50	0,00		0,00	0,00	205,87	-15,77	13.052
15	0,80	100	50	0,00		0,00	0,00	205,87	-15,08	13.651
16	0,90	100	50	0,00		0,00	0,00	205,87	-14,27	14.422
17	1,00	100	50	0,00		0,00	0,00	205,87	-13,35	15.415
18	1,10	100	50	0,00		0,00	0,00	205,87	-12,32	16.707
19	1,20	100	50	0,00		0,00	0,00	205,87	-11,18	18.419
20	1,30	100	50	0,00		0,00	0,00	205,87	-9,92	20.758
21	1,40	100	50	0,00		0,00	0,00	205,87	-8,55	24.091
22	1,50	100	50	0,00		0,00	0,00	205,87	-6,31	32.624
23	1,60	100	50	0,00		0,00	0,00	205,87	-3,21	64.099
24	1,70	100	50	0,00		0,00	0,00	205,87	0,00	100.000

Combinazione nº 2 - STR A1-M1-R3 H + V

n°	Y	В	Н	Afw	cotθ	V _{Rcd}	V _{Rsd}	V _{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	-0,80	100	50	0,00		0,00	0,00	205,87	0,00	100.000

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 105 di 117

n°	Y	В	Н	Afw	cotθ	V _{Rcd}	V_{Rsd}	V _{Rd}	T	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
2	-0,70	100	50	0,00		0,00	0,00	205,87	3,26	63.119
3	-0,60	100	50	0,00		0,00	0,00	205,87	6,51	31.601
4	-0,50	100	50	0,00		0,00	0,00	205,87	9,76	21.096
5	-0,40	100	50	0,00		0,00	0,00	205,87	12,99	15.843
6	-0,30	100	50	0,00		0,00	0,00	205,87	16,22	12.691
7	0,00	100	50	0,00		0,00	0,00	205,87	-7,50	27.460
8	0,10	100	50	0,00		0,00	0,00	205,87	-7,17	28.715
9	0,20	100	50	0,00		0,00	0,00	205,87	-6,83	30.129
10	0,30	100	50	0,00		0,00	0,00	205,87	-6,49	31.731
11	0,40	100	50	0,00		0,00	0,00	205,87	-6,13	33.560
12	0,50	100	50	0,00		0,00	0,00	205,87	-5,77	35.666
13	0,60	100	50	0,00		0,00	0,00	205,87	-5,40	38.115
14	0,70	100	50	0,00		0,00	0,00	205,87	-5,02	40.996
15	0,80	100	50	0,00		0,00	0,00	205,87	-4,63	44.431
16	0,90	100	50	0,00		0,00	0,00	205,87	-4,24	48.594
17	1,00	100	50	0,00		0,00	0,00	205,87	-3,83	53.738
18	1,10	100	50	0,00		0,00	0,00	205,87	-3,42	60.252
19	1,20	100	50	0,00		0,00	0,00	205,87	-2,99	68.761
20	1,30	100	50	0,00		0,00	0,00	205,87	-2,56	80.339
21	1,40	100	50	0,00		0,00	0,00	205,87	-2,12	97.000
22	1,50	100	50	0,00		0,00	0,00	205,87	-1,52	135.124
23	1,60	100	50	0,00		0,00	0,00	205,87	-0,77	268.721
24	1,70	100	50	0,00		0,00	0,00	205,87	0,00	100.000

Combinazione nº 3 - STR A1-M1-R3 H - V

n°	Y	В	Н	Afw	cotθ	V _{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	-0,80	100	50	0,00		0,00	0,00	205,87	0,00	100.000
2	-0,70	100	50	0,00		0,00	0,00	205,87	4,48	45.911
3	-0,60	100	50	0,00		0,00	0,00	205,87	8,86	23.239
4	-0,50	100	50	0,00		0,00	0,00	205,87	13,12	15.687
5	-0,40	100	50	0,00		0,00	0,00	205,87	17,28	11.914
6	-0,30	100	50	0,00		0,00	0,00	205,87	21,32	9.654
7	0,00	100	50	0,00		0,00	0,00	205,87	-23,96	8.592
8	0,10	100	50	0,00		0,00	0,00	205,87	-23,65	8.705
9	0,20	100	50	0,00		0,00	0,00	205,87	-23,23	8.863
10	0,30	100	50	0,00		0,00	0,00	205,87	-22,69	9.071
11	0,40	100	50	0,00		0,00	0,00	205,87	-22,05	9.335
12	0,50	100	50	0,00		0,00	0,00	205,87	-21,30	9.664
13	0,60	100	50	0,00		0,00	0,00	205,87	-20,44	10.070
14	0,70	100	50	0,00		0,00	0,00	205,87	-19,47	10.572
15	0,80	100	50	0,00		0,00	0,00	205,87	-18,39	11.192
16	0,90	100	50	0,00		0,00	0,00	205,87	-17,21	11.965
17	1,00	100	50	0,00		0,00	0,00	205,87	-15,91	12.942
18	1,10	100	50	0,00		0,00	0,00	205,87	-14,50	14.199
19	1,20	100	50	0,00		0,00	0,00	205,87	-12,98	15.859
20	1,30	100	50	0,00		0,00	0,00	205,87	-11,35	18.132
21	1,40	100	50	0,00		0,00	0,00	205,87	-9,62	21.406
22	1,50	100	50	0,00		0,00	0,00	205,87	-7,02	29.321
23	1,60	100	50	0,00		0,00	0,00	205,87	-3,57	57.741
24	1,70	100	50	0,00		0,00	0,00	205,87	0,00	100.000

Combinazione nº 4 - STR A1-M1-R3 H - V

n°	Y	В	Н	Afw	cot0	V_{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	-0,80	100	50	0,00		0,00	0,00	205,87	0,00	100.000
2	-0,70	100	50	0,00		0,00	0,00	205,87	2,93	70.276
3	-0,60	100	50	0,00		0,00	0,00	205,87	5,85	35.206
4	-0,50	100	50	0,00		0,00	0,00	205,87	8,75	23.516
5	-0,40	100	50	0,00		0,00	0,00	205,87	11,65	17.671
6	-0,30	100	50	0,00		0,00	0,00	205,87	14,53	14.164
7	0,00	100	50	0,00		0,00	0,00	205,87	-13,85	14.860
8	0,10	100	50	0,00		0,00	0,00	205,87	-13,17	15.628
9	0,20	100	50	0,00		0,00	0,00	205,87	-12,48	16.495
10	0,30	100	50	0,00		0,00	0,00	205,87	-11,78	17.480
11	0,40	100	50	0,00		0,00	0,00	205,87	-11,06	18.609

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	106 di 117

n°	Y	В	Н	Afw	cotθ	V_{Rcd}	V _{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
12	0,50	100	50	0,00		0,00	0,00	205,87	-10,34	19.915
13	0,60	100	50	0,00		0,00	0,00	205,87	-9,60	21.444
14	0,70	100	50	0,00		0,00	0,00	205,87	-8,85	23.257
15	0,80	100	50	0,00		0,00	0,00	205,87	-8,09	25.439
16	0,90	100	50	0,00		0,00	0,00	205,87	-7,32	28.117
17	1,00	100	50	0,00		0,00	0,00	205,87	-6,54	31.480
18	1,10	100	50	0,00		0,00	0,00	205,87	-5,75	35.826
19	1,20	100	50	0,00		0,00	0,00	205,87	-4,94	41.659
20	1,30	100	50	0,00		0,00	0,00	205,87	-4,13	49.896
21	1,40	100	50	0,00		0,00	0,00	205,87	-3,30	62.406
22	1,50	100	50	0,00		0,00	0,00	205,87	-2,31	89.101
23	1,60	100	50	0,00		0,00	0,00	205,87	-1,16	177.338
24	1,70	100	50	0,00		0,00	0,00	205,87	0,00	100.000

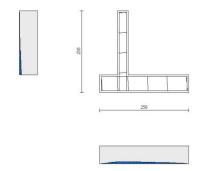


Fig. 11 - Verifiche a taglio (Inviluppo)

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV **FOGLIO** 433 512_v2 107 di 117 I-1 B_1

Risultati per inviluppo

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Tipo combinazione Tipo Sisma Combinazione sismica FS_{SCO} Coeff. di sicurezza allo scorrimento Coeff. di sicurezza al ribaltamento Coeff. di sicurezza a carico limite FS_{OLTM} FS_{STAB}

Indice della combinazione

Coeff. di sicurezza a stabilità globale Coeff. di sicurezza a sifonamento Coeff. di sicurezza a sollevamento

n°	Tipo	Sismica	FS _{sco}	FS _{RIB}	FS _{QLIM}	FS _{STAB}	FS _{HYD}	FSUPL
1	STR A1-M1-R3	H + V	1.486		4.629			
2	STR A1-M1-R3	H + V	2.701		7.449			
3	STR A1-M1-R3	H - V	1.530		5.037			
4	STR A1-M1-R3	H - V	2.766		8.089			
5	GEO A2-M2-R2	H + V				1.801		
6	GEO A2-M2-R2	H + V				2.293		
7	GEO A2-M2-R2	H - V				1.847		
8	GEO A2-M2-R2	H - V				2.352		
9	EQU	H + V		4.002				
10	EQU	H + V		6.769				
11	EQU	H - V		3.220				
12	EQU	H - V		4.754				

Verifica a scorrimento fondazione

Simbologia adottata

Indice combinazione

Rsa Resistenza allo scorrimento per attrito, espresso in [kN] Resistenza passiva terreno antistante, espresso in [kN] Rpt

Resistenza passiva sperone, espresso in [kN] Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN]

Rps Rp Rt R

Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN] Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN]

Carico parallelo al piano di posa, espresso in [kN]

Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	T	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
	1 48,32	0,00	0,00			48,32	32,51	1.486

Verifica a carico limite

Simbologia adottata

n° N Indice combinazione

Carico verticale totale, espresso in [kN] carico limite del terreno, espresso in [kN]

Portanza di progetto, espresso in [kN]
Fattore di sicurezza (rapporto tra portanza di progetto e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kN]	[kN]	[kN]	
1	120,42	557,46	464,55	4.629

Dettagli calcolo portanza

Simbologia adottata

Indece combinazione Nc, Nq, Nγ Fattori di capacità portante

ic, iq, i γ Fattori di inclinazione del carico dc, dq, d γ Fattori di profondità d Fattori di profondità del piano di posa

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO FLABORATO DOCUMENTO RFV **FOGLIO** 433 512_v2 108 di 117 I-1 B_1

Fattori di inclinazione del profilo topografico gc, gq, gγ bc, bq, bγ Fattori di inclinazione del piano di posa

sc, sq, syFattori di forma della fondazione

Fattori di riduzione per punzonamento secondo Vesic

Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByN, viene moltiplicato per questo

fattore

Affondamento del piano di posa, espresso in [m] Larghezza fondazione ridotta, espresso in [m] Н Altezza del cuneo di rottura, espresso in [m] Peso di volume del terreno medio, espresso in [kN/mc] Angolo di attrito del terreno medio, espresso in [°]

c Coesione del terreno medio, espresso in [kPa]
Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Meyerhof).

n°	Nc Nq Ny	ic iq iγ	dc dq dγ	gc gq g _Y	bc bq by	sc sq sγ	pc pq py	гү	D	B' H	γ	ф	С
									[m]	[m]	[kN/mc]	[°]	[kPa]
1	20.721	0.692	1.063					0.976	0,50	2,50	19,00	25.00	10
	10.662	0.692	1.031							1,96			
	6.766	0.157	1.031										

Verifica a ribaltamento

Simbologia adottata

Indice combinazione

Momento stabilizzante, espresso in [kNm] Momento ribaltante, espresso in [kNm] Ms

Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)

n°	Ms	Mr	FS	
	[kNm]	[kNm]		
11	164,18	50,99	3.220	

Verifica stabilità globale muro + terreno

Simbologia adottata

Ic Indice combinazione

Centro superficie di scorrimento, espresso in [m]

Raggio, espresso in [m] FS Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
5	-0.34: 0.84	3.75	1.801

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra)

W peso della striscia espresso in [kN] carico sulla striscia espresso in [kN] Ov

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

angolo d'attrito del terreno lungo la base della striscia coesione del terreno lungo la base della striscia espressa in [kPa]

b

larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kPa]

Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kPa]

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	1,73	5,07	3,33 - 0,25	70.566	34.000	0	0,0	
2	4,59	5,07	0,25	61.413	25.000	10	0,0	
3	6,55	5,07	0,25	54.058	25.000	10	0,0	
4	8,07	5,07	0,25	47.866	25.000	10	0,0	
5	9,30	5,07	0,25	42.354	25.000	10	0,0	
6	10,33	5,07	0,25	37.295	25.000	10	0,0	
7	11,62	5,07	0,25	32.560	25.000	10	0,0	
8	12,66	2,84	0,25	28.064	25.000	10	0,0	
9	13,25	1,27	0,25	23.751	25.000	10	0,0	
10	13,74	1,27	0,25	19.577	25.000	10	0,0	

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	109 di 117

n°	W	Qy	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
11	14,13	1,27	0,25	15.509	25.000	10	0,0	
12	14,42	1,27	0,25	11.521	25.000	10	0,0	
13	14,63	1,27	0,25	7.588	25.000	10	0,0	
14	17,13	0,47	0,25	3.691	25.000	10	0,0	
15	8,06	0,00	0,25	-0.188	25.000	10	0,0	
16	6,07	0,00	0,25	-4.069	25.000	10	0,0	
17	5,39	0,00	0,25	-7.968	25.000	10	0,0	
18	4,96	0,00	0,25	-11.905	25.000	10	0,0	
19	4,66	0,00	0,25	-15.901	25.000	10	0,0	
20	4,26	0,00	0,25	-19.978	25.000	10	0,0	
21	3,77	0,00	0,25	-24.163	25.000	10	0,0	
22	3,16	0,00	0,25	-28.492	25.000	10	0,0	
23	2,43	0,00	0,25	-33.008	25.000	10	0,0	
24	1,56	0,00	0,25	-37.771	25.000	10	0,0	
25	0,52	0,00	-3,01 - 0,25	-41.614	25.000	10	0,0	

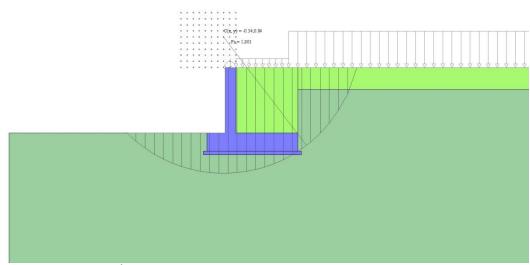


Fig. 12 - Stabilità fronte di scavo - Cerchio critico (Combinazione n° 5)

Sollecitazioni

Simbologia adottata

Mmin, Mmax

Sforzo normale minimo e massimo, espresso in [kN]. Positivo se di compressione.

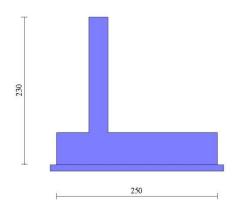
Tmin, TmaxTaglio minimo e massimo, espresso in [kN]. Positivo se diretto da monte verso valle

Mmin, Mmax

Momento minimo e massimo, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Paramento

n°	Х	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0,00	0,31	0,31	0,33	1,53	0,33	1,65
2	-0,09	0,98	0,98	0,44	1,74	0,36	1,80
3	-0,18	1,66	1,66	0,59	2,01	0,41	1,96
4	-0,27	2,33	2,33	0,80	2,34	0,47	2,16
5	-0,36	3,01	3,01	1,06	2,72	0,56	2,39
6	-0,45	3,68	3,68	1,37	3,15	0,66	2,65
7	-0,54	4,36	4,36	1,72	3,64	0,80	2,96
8	-0,63	5,04	5,04	2,13	4,19	0,98	3,31
9	-0,72	5,71	5,71	2,59	4,80	1,19	3,71
10	-0,81	6,38	6,38	3,09	5,46	1,44	4,17


DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	110 di 117

n°	X	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
11	-0,90	7,06	7,06	3,65	6,17	1,75	4,70
12	-0,99	7,73	7,73	4,25	6,94	2,10	5,29
13	-1,08	8,41	8,41	4,90	7,77	2,51	5,95
14	-1,17	9,08	9,08	5,61	8,65	2,99	6,69
15	-1,26	9,76	9,76	6,36	9,59	3,52	7,51
16	-1,35	10,43	10,43	7,16	10,58	4,13	8,41
17	-1,44	11,11	11,11	8,02	11,63	4,81	9,41
18	-1,53	11,78	11,78	8,92	12,74	5,58	10,51
19	-1,62	12,46	12,46	9,87	13,90	6,42	11,71
20	-1,71	13,13	13,13	10,87	15,11	7,35	13,01
21	-1,80	13,81	13,81	11,92	16,39	8,38	14,43

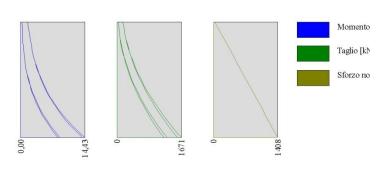


Fig. 13 - Paramento (Inviluppo)

Fondazione

n°	Х	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	-0,80	0,00	0,00	0,00	0,00	0,00	0,00
2	-0,70	0,00	0,00	2,93	4,93	0,15	0,25
3	-0,60	0,00	0,00	5,85	9,74	0,59	0,98
4	-0,50	0,00	0,00	8,75	14,44	1,32	2,19
5	-0,40	0,00	0,00	11,65	19,02	2,34	3,86
6	-0,30	0,00	0,00	14,53	23,49	3,65	5,99
7	0,00	0,00	0,00	-23,96	-7,50	-24,85	-6,73
8	0,10	0,00	0,00	-23,65	-7,17	-22,66	-6,03
9	0,20	0,00	0,00	-23,23	-6,83	-20,50	-5,37
10	0,30	0,00	0,00	-22,69	-6,49	-18,39	-4,74
11	0,40	0,00	0,00	-22,05	-6,13	-16,34	-4,15
12	0,50	0,00	0,00	-21,30	-5,77	-14,36	-3,59
13	0,60	0,00	0,00	-20,44	-5,40	-12,46	-3,07
14	0,70	0,00	0,00	-19,47	-5,02	-10,65	-2,58
15	0,80	0,00	0,00	-18,39	-4,63	-8,94	-2,14
16	0,90	0,00	0,00	-17,21	-4,24	-7,35	-1,73
17	1,00	0,00	0,00	-15,91	-3,83	-5,88	-1,37
18	1,10	0,00	0,00	-14,50	-3,42	-4,55	-1,04
19	1,20	0,00	0,00	-12,98	-2,99	-3,36	-0,76
20	1,30	0,00	0,00	-11,35	-2,56	-2,33	-0,52
21	1,40	0,00	0,00	-9,62	-2,12	-1,47	-0,32
22	1,50	0,00	0,00	-7,02	-1,52	-0,71	-0,15

BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	111 di 117

n°	Х	N _{min}	N _{max}	T _{min}	T _{max}	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
23	1,60	0,00	0,00	-3,57	-0,77	-0,18	-0,04
24	1,70	0,00	0,00	0,00	0,00	0,00	0,00

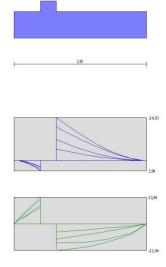


Fig. 14 - Fondazione (Inviluppo)

Verifiche strutturali

Verifiche a flessione

Elementi calcolati a trave

Simbologia adottata

ordinata sezione espressa in [m] larghezza sezione espresso in [cm]

altezza sezione espressa in [cm] area ferri inferiori espresso in [cmq]

area ferri superiori espressa in [cmq] momento agente espressa in [kNm] sforzo normale agente espressa in [kN]

B H Afi Afs M N

Mu Nu FS momento ultimi espresso in [kNm] sforzo normale ultimo espressa in [kN]

fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

	v	_					-			=0
n°	Y	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	0,00	100	30	7,70	7,70	1,65	0,31	77,79	14,61	47.143
2	-0,09	100	30	7,70	7,70	1,80	0,98	81,48	44,67	45.354
3	-0,18	100	30	7,70	7,70	1,96	1,66	84,80	71,64	43.157
4	-0,27	100	30	7,70	7,70	2,16	2,33	87,64	94,74	40.573
5	-0,36	100	30	7,70	7,70	2,39	3,01	89,94	113,41	37.678
6	-0,45	100	30	7,70	7,70	2,65	3,68	91,66	127,43	34.580
7	-0,54	100	30	7,70	7,70	2,96	4,36	92,83	136,91	31.402
8	-0,63	100	30	7,70	7,70	3,31	5,04	93,49	142,28	28.258
9	-0,72	100	30	7,70	7,70	3,71	5,71	93,72	144,15	25.244
10	-0,81	100	30	7,70	7,70	4,17	6,38	93,61	143,21	22.429
11	-0,90	100	30	7,70	7,70	4,70	7,06	93,23	140,16	19.853
12	-0,99	100	30	7,70	7,70	5,29	7,73	92,67	135,61	17.532
13	-1,08	100	30	7,70	7,70	5,95	8,41	91,99	130,09	15.468

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	112 di 117

n°	Y	В	Н	Afi	Afs	M	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
14	-1,17	100	30	7,70	7,70	6,69	9,08	91,24	123,99	13.648
15	-1,26	100	30	7,70	7,70	7,51	9,76	90,46	117,63	12.052
16	-1,35	100	30	7,70	7,70	8,41	10,43	89,67	111,22	10.659
17	-1,44	100	30	7,70	7,70	9,41	11,11	88,90	104,94	9.445
18	-1,53	100	30	7,70	7,70	10,51	11,78	88,15	98,86	8.389
19	-1,62	100	30	7,70	7,70	11,71	12,46	87,44	93,07	7.469
20	-1,71	100	30	7,70	7,70	13,01	13,13	86,76	87,59	6.669
21	-1,80	100	30	7,70	7,70	14,43	13,81	86,13	82,44	5.970

Fondazione

n°	Y	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	-0,80	100	50	7,70	7,70	0,00	0,00	0,00	0,00	1000.000
2	-0,70	100	50	7,70	7,70	0,25	0,00	134,32	0,00	543.396
3	-0,60	100	50	7,70	7,70	0,98	0,00	134,32	0,00	136.894
4	-0,50	100	50	7,70	7,70	2,19	0,00	134,32	0,00	61.313
5	-0,40	100	50	7,70	7,70	3,86	0,00	134,32	0,00	34.758
6	-0,30	100	50	7,70	7,70	5,99	0,00	134,32	0,00	22.420
7	0,00	100	50	7,70	7,70	-24,85	0,00	-134,32	0,00	5.405
8	0,10	100	50	7,70	7,70	-22,66	0,00	-134,32	0,00	5.928
9	0,20	100	50	7,70	7,70	-20,50	0,00	-134,32	0,00	6.552
10	0,30	100	50	7,70	7,70	-18,39	0,00	-134,32	0,00	7.303
11	0,40	100	50	7,70	7,70	-16,34	0,00	-134,32	0,00	8.220
12	0,50	100	50	7,70	7,70	-14,36	0,00	-134,32	0,00	9.354
13	0,60	100	50	7,70	7,70	-12,46	0,00	-134,32	0,00	10.781
14	0,70	100	50	7,70	7,70	-10,65	0,00	-134,32	0,00	12.613
15	0,80	100	50	7,70	7,70	-8,94	0,00	-134,32	0,00	15.020
16	0,90	100	50	7,70	7,70	-7,35	0,00	-134,32	0,00	18.277
17	1,00	100	50	7,70	7,70	-5,88	0,00	-134,32	0,00	22.842
18	1,10	100	50	7,70	7,70	-4,55	0,00	-134,32	0,00	29.542
19	1,20	100	50	7,70	7,70	-3,36	0,00	-134,32	0,00	39.984
20	1,30	100	50	7,70	7,70	-2,33	0,00	-134,32	0,00	57.669
21	1,40	100	50	7,70	7,70	-1,47	0,00	-134,32	0,00	91.548
22	1,50	100	50	7,70	7,70	-0,71	0,00	-134,32	0,00	189.344
23	1,60	100	50	7,70	7,70	-0,18	0,00	-134,32	0,00	749.659
24	1,70	100	50	7,70	7,70	0,00	0,00	0,00	0,00	1000.000

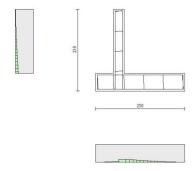


Fig. 15 - Verifiche a flessione (Inviluppo)

BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA LOTTO DOCUMENTO ELABORATO RFV FOGLIO 433 I-1 B_1 512_v2 1 113 di 117

Verifiche a taglio

Elementi calcolati a trave

Simbologia adottata

indice sezione

ordinata sezione espressa in [m] larghezza sezione espresso in [cm] H Afw

largnezza sezione espresso in [cm]
altezza sezione espressa in [cm]
area ferri a taglio espresso in [cmq]
inclinazione dei puntoni di calcestruzzo
resistenza di progetto a 'taglio compressione' espressa in [kN]
resistenza di progetto a 'taglio (min(VRcd, VRsd)) espresso in [kN]
taglio agente espressa in [kN] θ VRcd VRsd VRd

T FS fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente)

Paramento

n°	Y	В	н	Afw	cotθ	V _{Rcd}	V_{Rsd}	V _{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	0,00	100	30	0,00		0,00	0,00	159,23	1,53	104.297
2	-0,09	100	30	0,00		0,00	0,00	159,32	1,74	91.544
3	-0,18	100	30	0,00		0,00	0,00	159,41	2,01	79.291
4	-0,27	100	30	0,00		0,00	0,00	159,50	2,34	68.283
5	-0,36	100	30	0,00		0,00	0,00	159,59	2,72	58.749
6	-0,45	100	30	0,00		0,00	0,00	159,67	3,15	50.647
7	-0,54	100	30	0,00		0,00	0,00	159,76	3,64	43.834
8	-0,63	100	30	0,00		0,00	0,00	159,85	4,19	38.128
9	-0,72	100	30	0,00		0,00	0,00	159,94	4,80	33.349
10	-0,81	100	30	0,00		0,00	0,00	160,02	5,46	29.335
11	-0,90	100	30	0,00		0,00	0,00	160,11	6,17	25.950
12	-0,99	100	30	0,00		0,00	0,00	160,20	6,94	23.081
13	-1,08	100	30	0,00		0,00	0,00	160,29	7,77	20.637
14	-1,17	100	30	0,00		0,00	0,00	160,38	8,65	18.542
15	-1,26	100	30	0,00		0,00	0,00	160,46	9,59	16.737
16	-1,35	100	30	0,00		0,00	0,00	160,55	10,58	15.174
17	-1,44	100	30	0,00		0,00	0,00	160,64	11,63	13.812
18	-1,53	100	30	0,00		0,00	0,00	160,73	12,74	12.621
19	-1,62	100	30	0,00		0,00	0,00	160,81	13,90	11.573
20	-1,71	100	30	0,00		0,00	0,00	160,90	15,11	10.647
21	-1,80	100	30	0,00		0,00	0,00	160,99	16,39	9.825

Fondazione

n°	Υ	В	н	Afw	cotθ	V _{Rcd}	V _{Rsd}	V _{Rd}	т	FS
	[m]	[cm]	[cm]	[cmq]	COLO	[kN]	[kN]	[kN]	[kN]	.5
1	-0,80	100	50	0,00		0,00	0,00	205,87	0,00	100.000
2	-0,70	100	50	0,00		0,00	0,00	205,87	4,93	41.800
3	-0,60	100	50	0,00		0,00	0,00	205,87	9,74	21.143
4	-0,50	100	50	0,00		0,00	0,00	205,87	14,44	14.261
5	-0,40	100	50	0,00		0,00	0,00	205,87	19,02	10.823
6	-0,30	100	50	0,00		0,00	0,00	205,87	23,49	8.763
7	0,00	100	50	0,00		0,00	0,00	205,87	-23,96	8.592
8	0,10	100	50	0,00		0,00	0,00	205,87	-23,65	8.705
9	0,20	100	50	0,00		0,00	0,00	205,87	-23,23	8.863
10	0,30	100	50	0,00		0,00	0,00	205,87	-22,69	9.071
11	0,40	100	50	0,00		0,00	0,00	205,87	-22,05	9.335
12	0,50	100	50	0,00		0,00	0,00	205,87	-21,30	9.664
13	0,60	100	50	0,00		0,00	0,00	205,87	-20,44	10.070
14	0,70	100	50	0,00		0,00	0,00	205,87	-19,47	10.572
15	0,80	100	50	0,00		0,00	0,00	205,87	-18,39	11.192
16	0,90	100	50	0,00		0,00	0,00	205,87	-17,21	11.965
17	1,00	100	50	0,00		0,00	0,00	205,87	-15,91	12.942
18	1,10	100	50	0,00		0,00	0,00	205,87	-14,50	14.199
19	1,20	100	50	0,00		0,00	0,00	205,87	-12,98	15.859
20	1,30	100	50	0,00		0,00	0,00	205,87	-11,35	18.132
21	1,40	100	50	0,00		0,00	0,00	205,87	-9,62	21.406
22	1,50	100	50	0,00		0,00	0,00	205,87	-7,02	29.321
23	1,60	100	50	0,00		0,00	0,00	205,87	-3,57	57.741

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE **BOICELLI**

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

COMMESSA	LOTTO	ELABORATO	DOCUMENTO	REV.	FOGLIO
433	I-1	B_1	512_v2	1	114 di 117

n°	Y	В	Н	Afw	cotθ	V_{Rcd}	V_{Rsd}	V_{Rd}	Т	FS
	[m]	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
24	1,70	100	50	0,00		0,00	0,00	205,87	0,00	100.000

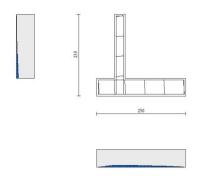


Fig. 16 - Verifiche a taglio (Inviluppo)

Verifiche a fessurazione

Simbologia adottata

indice sezione

ordinata sezione espressa in [m] larghezza sezione espresso in [cm] H Af Aeff altezza sezione espressa in [cm] area efficace espressa in [cmq] area efficace espressa in [cmq]

M Mpf momento agente espressa in [kNm] momento di prima fessurazione espressa in [kNm]

deformazione espresso in %

 $^\epsilon_{\text{Sm}}$ spaziatura tra le fessure espressa in [mm] apertura delle fessure espressa in [mm]

Paramento

n°	Y	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
2	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
3	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
4	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
5	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
6	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
7	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
8	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
9	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
10	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
11	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
12	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
13	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
14	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
15	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
16	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
17	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
18	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)

BOICELLI Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

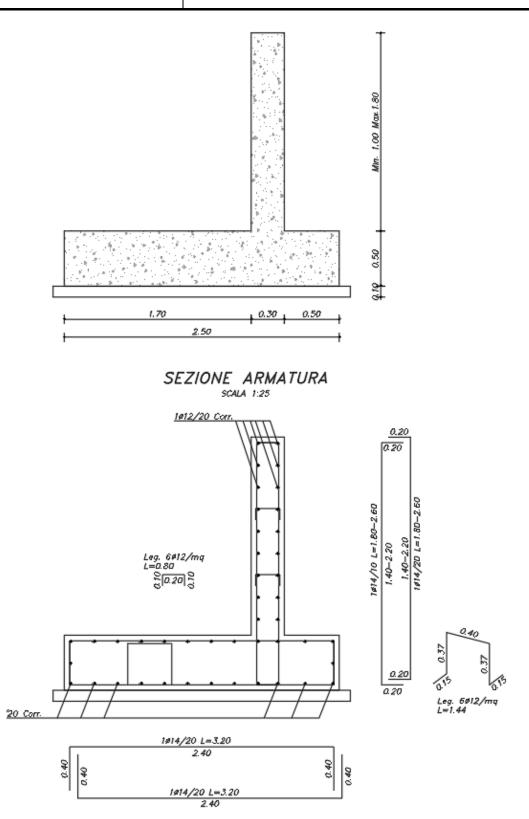
 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 115 di 117

n°	Υ	В	Н	Af	Aeff	M	Mpf	3	Sm	w
	[m]	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
19	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
20	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)
21	0,00	0	0	0,00	0,00	0,00	0,00	0,0000	0,00	0,000 (1)

Regione Emilia-Romagna

PROGETTO EUROPEO "INIWAS": ADEGUAMENTO DELL'IDROVIA FERRARESE AL TRAFFICO DI V CLASSE EUROPEA - I LOTTO/ 1 STRALCIO


DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 116 di 117

Le verifiche sono tutte soddisfatte sulla base dei materiali adottati.

DEMOLIZIONE E RICOSTRUZIONE DEL PONTE BARDELLA SUL CANALE BOICELLI

Progetto esecutivo

OPERE DI SOSTEGNO - RELAZIONE DI CALCOLO

 COMMESSA
 LOTTO
 ELABORATO
 DOCUMENTO
 REV.
 FOGLIO

 433
 I-1
 B_1
 512_v2
 1
 117 di 117

ALLEGATI

- 1. Tabulato muro H70
- 2. Tabulato muro H180

(I tabulati di calcolo completi sono disponibili su supporto infomatico)