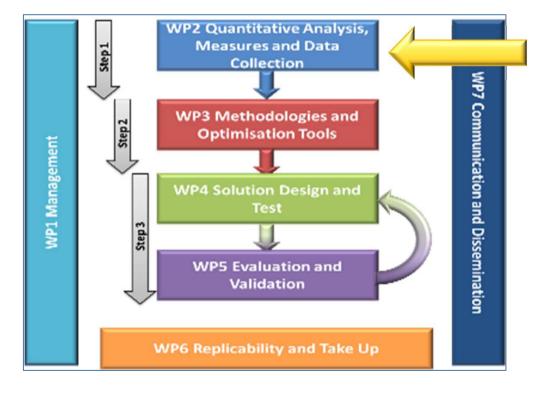


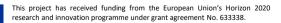
I risultati del progetto SUCCESS

Gli impatti dei CCC sulla logistica del settore delle costruzioni nei cantieri pilota di Lussemburgo, Parigi, Valencia e Verona

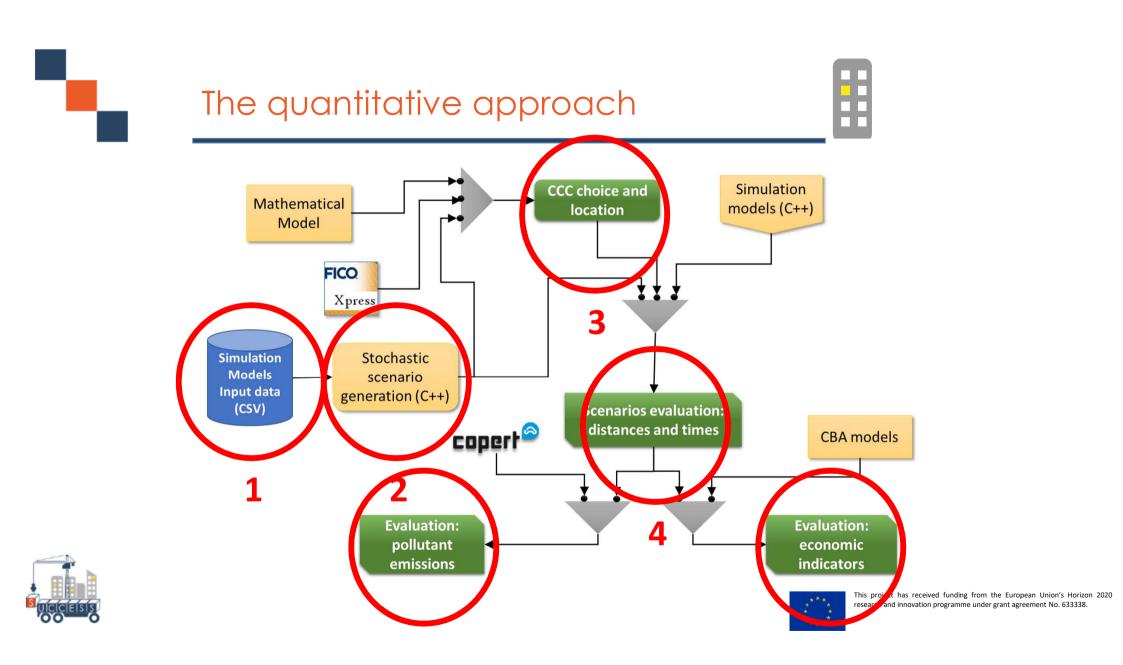
Prof. Mauro Dell'Amico


Simulation and Optimization

- Collect data (material flows) from real pilots
- Map process
- Provide city-wide scenarios for the next three years
- Design and select optimization models
- Apply simulation for a quantitative evaluation of the solutions
- Measure Environmental/Social/Economical KPIs

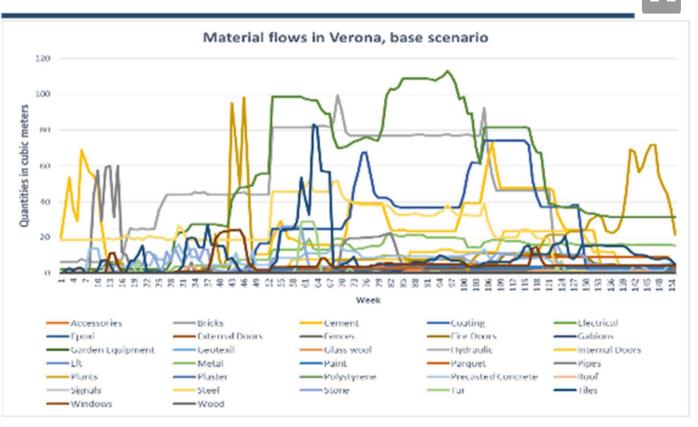


Project structure

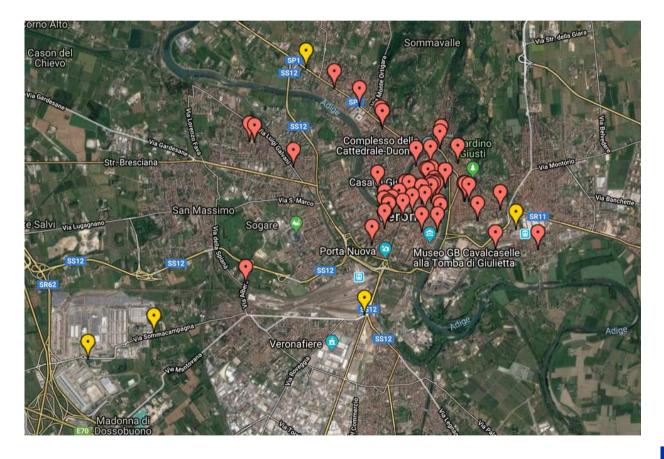

Strength points

- Results based on a large and detailed database of real data
- Application of stochastic mathematical models to manage uncertainty and select «best» decision
- Application of **numerical simulation** for a detailed evaluation of the impact

Input data


- **On-site collection** of material flows from pilots
- Definition of material flows on the entire project, from recorded data and planning
- Aggregation in classes
- Removal of classes not suitable
 for a CCC
- Removal of materials sent with
 complete trailer trucks

Class	
Accessories	Metal
Bitumen	Paint
Bricks	Parquet
Cement	Pipes
Coating	Plants
Electrical	Plaster
Ерохі	Polystyrene
External Doors	Precasted Concrete
Fences	Roof
Fire Doors	Scaffolding
Gabions	Signals
Garden Equipment	Steel
Geotexil	Stone
Glass wool	Tar
Hydraulic	Tiles
Internal Doors	Windows
Lift	Wood


Material flows: Verona

Construction sites - Verona

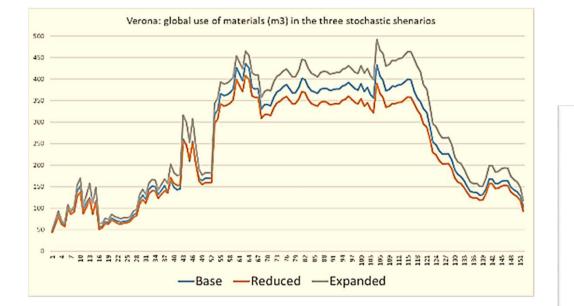
- 3 years
- 48 sites
- 220 M€
- No site < 500K €

Suppliers - Verona

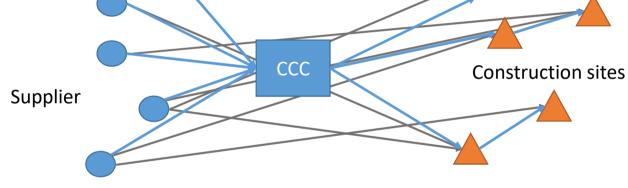
Selection of CCC location

- Facility selection model
- Input data are not deterministic
- The choice must be robust

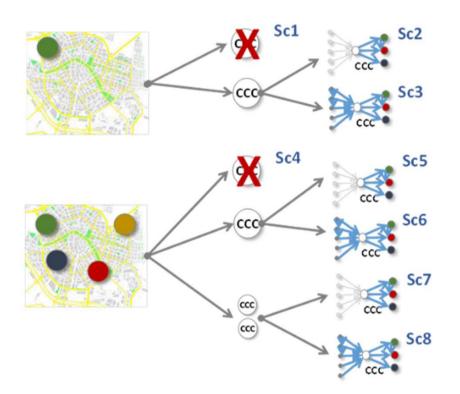
\rightarrow stochastic optimization approach

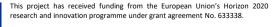

- 1. Manage uncertainty with some scenarios and probabilities for each one
- 2. Goal: minimize the $m^3 x$ km needed to serve the construction sites
- 3. Robust approach: minimize the expected value of the objective function

Stochastic model



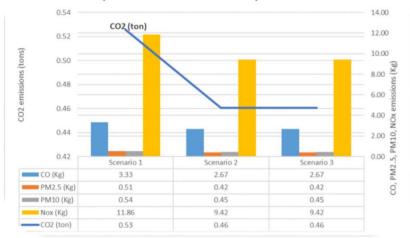
$$\begin{split} \min \sum_{h \in D} l_h y_h + \sum_{\omega \in \Omega i \in F} \sum_{j \in P h \in D} p_{\omega} (c_{ih} + c_{hj}) g_{ij}^{h\omega} \\ \sum_{h \in D} g_{ij}^{h\omega} &= \widetilde{q}_{ij}^{\omega} \qquad i \in F, j \in P, \omega \in \Omega \\ \sum_{h \in D} \sum_{j \in P} g_{ij}^{h\omega} &\leq C_h y_h \qquad h \in D, \omega \in \Omega \\ \sum_{h \in D} y_h &\leq B \\ g_{ij}^{h\omega} &\geq 0 \qquad i \in F, j \in P, h \in D, \omega \in \Omega \\ y_h \in \{0, 1\} \qquad h \in D \end{split}$$

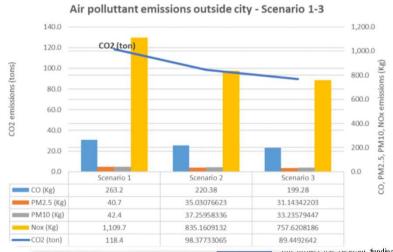

2° echelon



Simulation scenarios

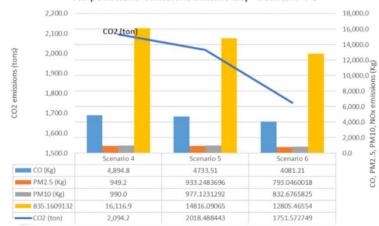
- Normal truck load 75%
- Supplier-CCC deliveries: weekly
- CCC-sites deliveries: daily (just-in-time), full load
- Unloading at the sites reduced if truck is scheduled from CCC


SC1> SC3							
Indicator Inside city Outside city Total							
Daily number of freight vehicles	-14%	-30%	-22%				
Kilometres / day travelled by vehicles	-12%	-29%	-29%				
% Increase load factor	8%	12%	10%				
Travel time	-15%	-30%	-30%				


SC1> SC3							
Polluttant	Inside city Outside city						
со	-20%	-24%	-24%				
PM2.5	-17%	-23%	-23%				
PM10	-16%	-22%	-21%				
NOx	-21%	-32%	-32%				
CO2	-12%	-24%	-24%				

Air polluttant emissions inside city - Scenario 1-3

SC4> SC6						
Indicator Inside city Outside city Total						
Daily number of freight vehicles	-85%	-23%	-54%			
Kilometres / day travelled by vehicles	-86%	-20%	-23%			
% Increase load factor	452%	12%	232%			
Travel time	-72%	-19%	-23%			


SC4>SC6						
Polluttant Inside city Outside city Total						
со	-67%	-17%	-19%			
PM2.5	-74%	-16%	-19%			
PM10	-75%	0%	-19%			
NOx	-51%	-21%	-22%			
CO2	-86%	-16%	-19%			

Air polluttant emissions inside city - Scenario 4-6

Air polluttant emissions outside city - Scenario 4-6

- Reduction in the number of trips inside the city → increase safety, decrease congestion, improve on-time delivery
- Reduction number of km in/out →decrease air polluttant emissions
- Increase load factor →economical saving

 The results in the 4 pilots are not identical, mainly because of the city topology, but savings always exist

Different cities

Valencia sc4> sc6					
Indicator Inside city Outside city					
Daily number of freight vehicles	-57%	-40%	-48%		
Kilometres / day travelled by vehicles	-44%	-34%	-34%		
% Increase load factor	87%	1%	44%		
Travel time	-39%	-33%	-34%		

Luxemburg

SC4> SC6						
Indicator Inside city Outside city						
Daily number of freight vehicles	-54%	-42%	-48%			
Kilometres / day travelled by vehicles	-23%	-43%	-42%			
% Increase load factor	75%	5%	40%			
Travel time	-27%	-42%	-41%			

Paris

SC4> SC6							
Indicator Inside city Outside city Total							
Daily number of freight vehicles	-43%	-52%	-38%				
Kilometres / day travelled by vehicles	-22%	-32%	-24%				
% Increase load factor	48%	-6%	21%				
Travel time	-5%	-32%	-22%				

Global savings

Polluttant	Inside city	Outside city	Total
СО	-27%	-26%	-26%
PM2.5	-31%	-24%	-24%
PM10	-32%	-3%	-22%
NOx	-18%	-37%	-34%
CO2	-34%	-27%	-26%

Indicator	Inside city	Outside city	Total
Daily number of freight vehicles	-60%	-35%	-46%
Kilometres / day travelled by vehicles	-51%	-26%	-25%
% Increase load factor	174%	1%	88%
Travel time	-38%	-26%	-25%

Thank you for your kind attention!

©success / vitaedesign

http://success-urbanlogistics.eu

